35 research outputs found

    The incidence game chromatic number

    Get PDF
    We introduce the incidence game chromatic number which unifies the ideas of game chromatic number and incidence coloring number of an undirected graph. For k-degenerate graphs with maximum degree D, the upper bound 2D+4k-2 for the incidence game chromatic number is given. If D is at least 5k, we improve this bound to the value 2D+3k-1. We also determine the exact incidence game chromatic number of cycles, stars and sufficiently large wheels and obtain the lower bound 3D/2 for the incidence game chromatic number of graphs of maximum degree D

    On Spanning Galaxies in Digraphs

    Get PDF
    International audienceIn a directed graph, a star is an arborescence with at least one arc, in which the root dominates all the other vertices. A galaxy is a vertex-disjoint union of stars. In this paper, we consider the Spanning Galaxy problem of deciding whether a digraph D has a spanning galaxy or not. We show that although this problem is NP-complete (even when restricted to acyclic digraphs), it becomes polynomial-time solvable when restricted to strong digraphs. In fact, we prove that restricted to this class, the \pb\ is equivalent to the problem of deciding if a strong digraph has a strong digraph with an even number of vertices. We then show a polynomial-time algorithm to solve this problem. We also consider some parameterized version of the Spanning Galaxy problem. Finally, we improve some results concerning the notion of directed star arboricity of a digraph D, which is the minimum number of galaxies needed to cover all the arcs of D. We show in particular that dst(D)\leq \Delta(D)+1 for every digraph D and that dst(D)\leq\Delta(D) for every acyclic digraph D

    Master index of volumes 161–170

    Get PDF

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Characterising and recognising game-perfect graphs

    Get PDF
    Consider a vertex colouring game played on a simple graph with kk permissible colours. Two players, a maker and a breaker, take turns to colour an uncoloured vertex such that adjacent vertices receive different colours. The game ends once the graph is fully coloured, in which case the maker wins, or the graph can no longer be fully coloured, in which case the breaker wins. In the game gBg_B, the breaker makes the first move. Our main focus is on the class of gBg_B-perfect graphs: graphs such that for every induced subgraph HH, the game gBg_B played on HH admits a winning strategy for the maker with only ω(H)\omega(H) colours, where ω(H)\omega(H) denotes the clique number of HH. Complementing analogous results for other variations of the game, we characterise gBg_B-perfect graphs in two ways, by forbidden induced subgraphs and by explicit structural descriptions. We also present a clique module decomposition, which may be of independent interest, that allows us to efficiently recognise gBg_B-perfect graphs.Comment: 39 pages, 8 figures. An extended abstract was accepted at the International Colloquium on Graph Theory (ICGT) 201
    corecore