696 research outputs found

    Regular Incidence Complexes, Polytopes, and C-Groups

    Full text link
    Regular incidence complexes are combinatorial incidence structures generalizing regular convex polytopes, regular complex polytopes, various types of incidence geometries, and many other highly symmetric objects. The special case of abstract regular polytopes has been well-studied. The paper describes the combinatorial structure of a regular incidence complex in terms of a system of distinguished generating subgroups of its automorphism group or a flag-transitive subgroup. Then the groups admitting a flag-transitive action on an incidence complex are characterized as generalized string C-groups. Further, extensions of regular incidence complexes are studied, and certain incidence complexes particularly close to abstract polytopes, called abstract polytope complexes, are investigated.Comment: 24 pages; to appear in "Discrete Geometry and Symmetry", M. Conder, A. Deza, and A. Ivic Weiss (eds), Springe

    Topological Prismatoids and Small Simplicial Spheres of Large Diameter

    Full text link
    We introduce topological prismatoids, a combinatorial abstraction of the (geometric) prismatoids recently introduced by the second author to construct counter-examples to the Hirsch conjecture. We show that the `strong dd-step Theorem' that allows to construct such large-diameter polytopes from `non-dd-step' prismatoids still works at this combinatorial level. Then, using metaheuristic methods on the flip graph, we construct four combinatorially different non-dd-step 44-dimensional topological prismatoids with 1414 vertices. This implies the existence of 88-dimensional spheres with 1818 vertices whose combinatorial diameter exceeds the Hirsch bound. These examples are smaller that the previously known examples by Mani and Walkup in 1980 (2424 vertices, dimension 1111). Our non-Hirsch spheres are shellable but we do not know whether they are realizable as polytopes.Comment: 20 pages. Changes from v1 and v2: Reduced the part on shellability and general improvement to accesibilit

    Morse matchings on polytopes

    Full text link
    We show how to construct homology bases for certain CW complexes in terms of discrete Morse theory and cellular homology. We apply this technique to study certain subcomplexes of the half cube polytope studied in previous works. This involves constructing explicit complete acyclic Morse matchings on the face lattice of the half cube; this procedure may be of independent interest for other highly symmetric polytopes

    Geometric Reasoning with polymake

    Full text link
    The mathematical software system polymake provides a wide range of functions for convex polytopes, simplicial complexes, and other objects. A large part of this paper is dedicated to a tutorial which exemplifies the usage. Later sections include a survey of research results obtained with the help of polymake so far and a short description of the technical background

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    Bounds on the Coefficients of Tension and Flow Polynomials

    Full text link
    The goal of this article is to obtain bounds on the coefficients of modular and integral flow and tension polynomials of graphs. To this end we make use of the fact that these polynomials can be realized as Ehrhart polynomials of inside-out polytopes. Inside-out polytopes come with an associated relative polytopal complex and, for a wide class of inside-out polytopes, we show that this complex has a convex ear decomposition. This leads to the desired bounds on the coefficients of these polynomials.Comment: 16 page
    corecore