3,272 research outputs found

    Core-competitive Auctions

    Full text link
    One of the major drawbacks of the celebrated VCG auction is its low (or zero) revenue even when the agents have high value for the goods and a {\em competitive} outcome could have generated a significant revenue. A competitive outcome is one for which it is impossible for the seller and a subset of buyers to `block' the auction by defecting and negotiating an outcome with higher payoffs for themselves. This corresponds to the well-known concept of {\em core} in cooperative game theory. In particular, VCG revenue is known to be not competitive when the goods being sold have complementarities. A bottleneck here is an impossibility result showing that there is no auction that simultaneously achieves competitive prices (a core outcome) and incentive-compatibility. In this paper we try to overcome the above impossibility result by asking the following natural question: is it possible to design an incentive-compatible auction whose revenue is comparable (even if less) to a competitive outcome? Towards this, we define a notion of {\em core-competitive} auctions. We say that an incentive-compatible auction is α\alpha-core-competitive if its revenue is at least 1/α1/\alpha fraction of the minimum revenue of a core-outcome. We study the Text-and-Image setting. In this setting, there is an ad slot which can be filled with either a single image ad or kk text ads. We design an O(lnlnk)O(\ln \ln k) core-competitive randomized auction and an O(ln(k))O(\sqrt{\ln(k)}) competitive deterministic auction for the Text-and-Image setting. We also show that both factors are tight

    Optimal Competitive Auctions

    Full text link
    We study the design of truthful auctions for selling identical items in unlimited supply (e.g., digital goods) to n unit demand buyers. This classic problem stands out from profit-maximizing auction design literature as it requires no probabilistic assumptions on buyers' valuations and employs the framework of competitive analysis. Our objective is to optimize the worst-case performance of an auction, measured by the ratio between a given benchmark and revenue generated by the auction. We establish a sufficient and necessary condition that characterizes competitive ratios for all monotone benchmarks. The characterization identifies the worst-case distribution of instances and reveals intrinsic relations between competitive ratios and benchmarks in the competitive analysis. With the characterization at hand, we show optimal competitive auctions for two natural benchmarks. The most well-studied benchmark F(2)()\mathcal{F}^{(2)}(\cdot) measures the envy-free optimal revenue where at least two buyers win. Goldberg et al. [13] showed a sequence of lower bounds on the competitive ratio for each number of buyers n. They conjectured that all these bounds are tight. We show that optimal competitive auctions match these bounds. Thus, we confirm the conjecture and settle a central open problem in the design of digital goods auctions. As one more application we examine another economically meaningful benchmark, which measures the optimal revenue across all limited-supply Vickrey auctions. We identify the optimal competitive ratios to be (nn1)n11(\frac{n}{n-1})^{n-1}-1 for each number of buyers n, that is e1e-1 as nn approaches infinity

    Computer-aided verification in mechanism design

    Full text link
    In mechanism design, the gold standard solution concepts are dominant strategy incentive compatibility and Bayesian incentive compatibility. These solution concepts relieve the (possibly unsophisticated) bidders from the need to engage in complicated strategizing. While incentive properties are simple to state, their proofs are specific to the mechanism and can be quite complex. This raises two concerns. From a practical perspective, checking a complex proof can be a tedious process, often requiring experts knowledgeable in mechanism design. Furthermore, from a modeling perspective, if unsophisticated agents are unconvinced of incentive properties, they may strategize in unpredictable ways. To address both concerns, we explore techniques from computer-aided verification to construct formal proofs of incentive properties. Because formal proofs can be automatically checked, agents do not need to manually check the properties, or even understand the proof. To demonstrate, we present the verification of a sophisticated mechanism: the generic reduction from Bayesian incentive compatible mechanism design to algorithm design given by Hartline, Kleinberg, and Malekian. This mechanism presents new challenges for formal verification, including essential use of randomness from both the execution of the mechanism and from the prior type distributions. As an immediate consequence, our work also formalizes Bayesian incentive compatibility for the entire family of mechanisms derived via this reduction. Finally, as an intermediate step in our formalization, we provide the first formal verification of incentive compatibility for the celebrated Vickrey-Clarke-Groves mechanism

    Learning Prices for Repeated Auctions with Strategic Buyers

    Full text link
    Inspired by real-time ad exchanges for online display advertising, we consider the problem of inferring a buyer's value distribution for a good when the buyer is repeatedly interacting with a seller through a posted-price mechanism. We model the buyer as a strategic agent, whose goal is to maximize her long-term surplus, and we are interested in mechanisms that maximize the seller's long-term revenue. We define the natural notion of strategic regret --- the lost revenue as measured against a truthful (non-strategic) buyer. We present seller algorithms that are no-(strategic)-regret when the buyer discounts her future surplus --- i.e. the buyer prefers showing advertisements to users sooner rather than later. We also give a lower bound on strategic regret that increases as the buyer's discounting weakens and shows, in particular, that any seller algorithm will suffer linear strategic regret if there is no discounting.Comment: Neural Information Processing Systems (NIPS 2013
    corecore