182 research outputs found

    When Cellular Meets WiFi in Wireless Small Cell Networks

    Full text link
    The deployment of small cell base stations(SCBSs) overlaid on existing macro-cellular systems is seen as a key solution for offloading traffic, optimizing coverage, and boosting the capacity of future cellular wireless systems. The next-generation of SCBSs is envisioned to be multi-mode, i.e., capable of transmitting simultaneously on both licensed and unlicensed bands. This constitutes a cost-effective integration of both WiFi and cellular radio access technologies (RATs) that can efficiently cope with peak wireless data traffic and heterogeneous quality-of-service requirements. To leverage the advantage of such multi-mode SCBSs, we discuss the novel proposed paradigm of cross-system learning by means of which SCBSs self-organize and autonomously steer their traffic flows across different RATs. Cross-system learning allows the SCBSs to leverage the advantage of both the WiFi and cellular worlds. For example, the SCBSs can offload delay-tolerant data traffic to WiFi, while simultaneously learning the probability distribution function of their transmission strategy over the licensed cellular band. This article will first introduce the basic building blocks of cross-system learning and then provide preliminary performance evaluation in a Long-Term Evolution (LTE) simulator overlaid with WiFi hotspots. Remarkably, it is shown that the proposed cross-system learning approach significantly outperforms a number of benchmark traffic steering policies

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    Social-aware hybrid mobile offloading

    Get PDF
    Mobile offloading is a promising technique to aid the constrained resources of a mobile device. By offloading a computational task, a device can save energy and increase the performance of the mobile applications. Unfortunately, in existing offloading systems, the opportunistic moments to offload a task are often sporadic and short-lived. We overcome this problem by proposing a social-aware hybrid offloading system (HyMobi), which increases the spectrum of offloading opportunities. As a mobile device is always co- located to at least one source of network infrastructure throughout of the day, by merging cloudlet, device-to-device and remote cloud offloading, we increase the availability of offloading support. Integrating these systems is not trivial. In order to keep such coupling, a strong social catalyst is required to foster user's participation and collaboration. Thus, we equip our system with an incentive mechanism based on credit and reputation, which exploits users' social aspects to create offload communities. We evaluate our system under controlled and in-the-wild scenarios. With credit, it is possible for a device to create opportunistic moments based on user's present need. As a result, we extended the widely used opportunistic model with a long-term perspective that significantly improves the offloading process and encourages unsupervised offloading adoption in the wild

    Mobile data and computation offloading in mobile cloud computing

    Get PDF
    Le trafic mobile augmente considérablement en raison de la popularité des appareils mobiles et des applications mobiles. Le déchargement de données mobiles est une solution permettant de réduire la congestion du réseau cellulaire. Le déchargement de calcul mobile peut déplacer les tâches de calcul d'appareils mobiles vers le cloud. Dans cette thèse, nous étudions d'abord le problème du déchargement de données mobiles dans l'architecture du cloud computing mobile. Afin de minimiser les coûts de transmission des données, nous formulons le processus de déchargement des données sous la forme d'un processus de décision de Markov à horizon fini. Nous proposons deux algorithmes de déchargement des données pour un coût minimal. Ensuite, nous considérons un marché sur lequel un opérateur de réseau mobile peut vendre de la bande passante à des utilisateurs mobiles. Nous formulons ce problème sous la forme d'une enchère comportant plusieurs éléments afin de maximiser les bénéfices de l'opérateur de réseau mobile. Nous proposons un algorithme d'optimisation robuste et deux algorithmes itératifs pour résoudre ce problème. Enfin, nous nous concentrons sur les problèmes d'équilibrage de charge afin de minimiser la latence du déchargement des calculs. Nous formulons ce problème comme un jeu de population. Nous proposons deux algorithmes d'équilibrage de la charge de travail basés sur la dynamique évolutive et des protocoles de révision. Les résultats de la simulation montrent l'efficacité et la robustesse des méthodes proposées.Global mobile traffic is increasing dramatically due to the popularity of smart mobile devices and data hungry mobile applications. Mobile data offloading is considered as a promising solution to alleviate congestion in cellular network. Mobile computation offloading can move computation intensive tasks and large data storage from mobile devices to cloud. In this thesis, we first study mobile data offloading problem under the architecture of mobile cloud computing. In order to minimize the overall cost for data delivery, we formulate the data offloading process, as a finite horizon Markov decision process, and we propose two data offloading algorithms to achieve minimal communication cost. Then, we consider a mobile data offloading market where mobile network operator can sell bandwidth to mobile users. We formulate this problem as a multi-item auction in order to maximize the profit of mobile network operator. We propose one robust optimization algorithm and two iterative algorithms to solve this problem. Finally, we investigate computation offloading problem in mobile edge computing. We focus on workload balancing problems to minimize the transmission latency and computation latency of computation offloading. We formulate this problem as a population game, in order to analyze the aggregate offloading decisions, and we propose two workload balancing algorithms based on evolutionary dynamics and revision protocols. Simulation results show the efficiency and robustness of our proposed methods
    • …
    corecore