1,507 research outputs found

    Game Theoretic Approaches to Massive Data Processing in Wireless Networks

    Full text link
    Wireless communication networks are becoming highly virtualized with two-layer hierarchies, in which controllers at the upper layer with tasks to achieve can ask a large number of agents at the lower layer to help realize computation, storage, and transmission functions. Through offloading data processing to the agents, the controllers can accomplish otherwise prohibitive big data processing. Incentive mechanisms are needed for the agents to perform the controllers' tasks in order to satisfy the corresponding objectives of controllers and agents. In this article, a hierarchical game framework with fast convergence and scalability is proposed to meet the demand for real-time processing for such situations. Possible future research directions in this emerging area are also discussed

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    A Trust-Based Relay Selection Approach to the Multi-Hop Network Formation Problem in Cognitive Radio Networks

    Get PDF
    One of the major challenges for today’s wireless communications is to meet the growing demand for supporting an increasing diversity of wireless applications with limited spectrum resource. In cooperative communications and networking, users share resources and collaborate in a distributed approach, similar to entities of active social groups in self organizational communities. Users’ information may be shared by the user and also by the cooperative users, in distributed transmission. Cooperative communications and networking is a fairly new communication paradigm that promises significant capacity and multiplexing gain increase in wireless networks. This research will provide a cooperative relay selection framework that exploits the similarity of cognitive radio networks to social networks. It offers a multi-hop, reputation-based power control game for routing. In this dissertation, a social network model provides a humanistic approach to predicting relay selection and network analysis in cognitive radio networks

    Dimensions of cooperative spectrum sharing: Rights and enforcement

    Get PDF
    Sharing of radio spectrum requires a careful and nuanced understanding of the rights of incumbents and spectrum entrants. In addition, the dynamics of stakeholders can be understood by examining how various rights are arranged (and rearranged) among them. Importantly, understanding the rights and their distribution is the predicate to developing rational and useful enforcement approaches. In this paper, we show that spectrum sharing involves a rearrangement of the rights associated with radio spectrum among stakeholders. We show how this rearrangement of rights implies the definition of new bundles of rights, appropriate to each particular sharing scenario. We discover these rights - and their (re)arrangement - by examining several cases of spectrum use. We begin with the rights associated with exclusive use and proceed to consider rights arrangement in commons and different spectrum sharing configurations. Further, in the case of commons, we explicitly examine how governance of commons can affect the rights distribution in spectrum. In each case, the bundles of rights associated with each stakeholder changes. New bundles of rights have consequences, not only on the behavior of spectrum users but also on the enforcement process. Our examination of the bundles of rights shows that each rearrangement results in different approaches to enforcement. We demonstrate this by revisiting enforcement in the cases we examine. © 2014 IEEE

    Blockchain-enabled resource management and sharing for 6G communications

    Get PDF
    The sixth-generation (6G) network must provide performance superior to previous generations to meet the requirements of emerging services and applications, such as multi-gigabit transmission rate, even higher reliability, and sub 1 ms latency and ubiquitous connection for the Internet of Everything (IoE). However, with the scarcity of spectrum resources, efficient resource management and sharing are crucial to achieving all these ambitious requirements. One possible technology to achieve all this is the blockchain. Because of its inherent properties, the blockchain has recently gained an important position, which is of great significance to 6G network and other networks. In particular, the integration of the blockchain in 6G will enable the network to monitor and manage resource utilization and sharing efficiently. Hence, in this paper, we discuss the potentials of the blockchain for resource management and sharing in 6G using multiple application scenarios, namely, Internet of things, device-to-device communications, network slicing, and inter-domain blockchain ecosystems

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    Cooperative retransmission protocols in fading channels : issues, solutions and applications

    Get PDF
    Future wireless systems are expected to extensively rely on cooperation between terminals, mimicking MIMO scenarios when terminal dimensions limit implementation of multiple antenna technology. On this line, cooperative retransmission protocols are considered as particularly promising technology due to their opportunistic and flexible exploitation of both spatial and time diversity. In this dissertation, some of the major issues that hinder the practical implementation of this technology are identified and pertaining solutions are proposed and analyzed. Potentials of cooperative and cooperative retransmission protocols for a practical implementation of dynamic spectrum access paradigm are also recognized and investigated. Detailed contributions follow. While conventionally regarded as energy efficient communications paradigms, both cooperative and retransmission concepts increase circuitry energy and may lead to energy overconsumption as in, e.g., sensor networks. In this context, advantages of cooperative retransmission protocols are reexamined in this dissertation and their limitation for short transmission ranges observed. An optimization effort is provided for extending an energy- efficient applicability of these protocols. Underlying assumption of altruistic relaying has always been a major stumbling block for implementation of cooperative technologies. In this dissertation, provision is made to alleviate this assumption and opportunistic mechanisms are designed that incentivize relaying via a spectrum leasing approach. Mechanisms are provided for both cooperative and cooperative retransmission protocols, obtaining a meaningful upsurge of spectral efficiency for all involved nodes (source-destination link and the relays). It is further recognized in this dissertation that the proposed relaying-incentivizing schemes have an additional and certainly not less important application, that is in dynamic spectrum access for property-rights cognitive-radio implementation. Provided solutions avoid commons-model cognitive-radio strict sensing requirements and regulatory and taxonomy issues of a property-rights model
    • …
    corecore