2,652 research outputs found

    Notes on Cloud computing principles

    Get PDF
    This letter provides a review of fundamental distributed systems and economic Cloud computing principles. These principles are frequently deployed in their respective fields, but their inter-dependencies are often neglected. Given that Cloud Computing first and foremost is a new business model, a new model to sell computational resources, the understanding of these concepts is facilitated by treating them in unison. Here, we review some of the most important concepts and how they relate to each other

    Cloud/fog computing resource management and pricing for blockchain networks

    Full text link
    The mining process in blockchain requires solving a proof-of-work puzzle, which is resource expensive to implement in mobile devices due to the high computing power and energy needed. In this paper, we, for the first time, consider edge computing as an enabler for mobile blockchain. In particular, we study edge computing resource management and pricing to support mobile blockchain applications in which the mining process of miners can be offloaded to an edge computing service provider. We formulate a two-stage Stackelberg game to jointly maximize the profit of the edge computing service provider and the individual utilities of the miners. In the first stage, the service provider sets the price of edge computing nodes. In the second stage, the miners decide on the service demand to purchase based on the observed prices. We apply the backward induction to analyze the sub-game perfect equilibrium in each stage for both uniform and discriminatory pricing schemes. For the uniform pricing where the same price is applied to all miners, the existence and uniqueness of Stackelberg equilibrium are validated by identifying the best response strategies of the miners. For the discriminatory pricing where the different prices are applied to different miners, the Stackelberg equilibrium is proved to exist and be unique by capitalizing on the Variational Inequality theory. Further, the real experimental results are employed to justify our proposed model.Comment: 16 pages, double-column version, accepted by IEEE Internet of Things Journa

    Bootstrapping Real-world Deployment of Future Internet Architectures

    Full text link
    The past decade has seen many proposals for future Internet architectures. Most of these proposals require substantial changes to the current networking infrastructure and end-user devices, resulting in a failure to move from theory to real-world deployment. This paper describes one possible strategy for bootstrapping the initial deployment of future Internet architectures by focusing on providing high availability as an incentive for early adopters. Through large-scale simulation and real-world implementation, we show that with only a small number of adopting ISPs, customers can obtain high availability guarantees. We discuss design, implementation, and evaluation of an availability device that allows customers to bridge into the future Internet architecture without modifications to their existing infrastructure

    VDKMS: Vehicular Decentralized Key Management System for Cellular Vehicular-to-Everything Networks, A Blockchain-Based Approach

    Full text link
    The rapid development of intelligent transportation systems and connected vehicles has highlighted the need for secure and efficient key management systems (KMS). In this paper, we introduce VDKMS (Vehicular Decentralized Key Management System), a novel Decentralized Key Management System designed specifically as an infrastructure for Cellular Vehicular-to-Everything (V2X) networks, utilizing a blockchain-based approach. The proposed VDKMS addresses the challenges of secure communication, privacy preservation, and efficient key management in V2X scenarios. It integrates blockchain technology, Self-Sovereign Identity (SSI) principles, and Decentralized Identifiers (DIDs) to enable secure and trustworthy V2X applications among vehicles, infrastructures, and networks. We first provide a comprehensive overview of the system architecture, components, protocols, and workflows, covering aspects such as provisioning, registration, verification, and authorization. We then present a detailed performance evaluation, discussing the security properties and compatibility of the proposed solution, as well as a security analysis. Finally, we present potential applications in the vehicular ecosystem that can leverage the advantages of our approach.Comment: 6 pages, 6 figures, accepted by IEEE Globecom 202

    Liberating the energy industry with blockchain:Is the technology ready?

    Get PDF
    • …
    corecore