245 research outputs found

    Approximating the Regular Graphic TSP in near linear time

    Get PDF
    We present a randomized approximation algorithm for computing traveling salesperson tours in undirected regular graphs. Given an nn-vertex, kk-regular graph, the algorithm computes a tour of length at most (1+7lnkO(1))n\left(1+\frac{7}{\ln k-O(1)}\right)n, with high probability, in O(nklogk)O(nk \log k) time. This improves upon a recent result by Vishnoi (\cite{Vishnoi12}, FOCS 2012) for the same problem, in terms of both approximation factor, and running time. The key ingredient of our algorithm is a technique that uses edge-coloring algorithms to sample a cycle cover with O(n/logk)O(n/\log k) cycles with high probability, in near linear time. Additionally, we also give a deterministic 32+O(1k)\frac{3}{2}+O\left(\frac{1}{\sqrt{k}}\right) factor approximation algorithm running in time O(nk)O(nk).Comment: 12 page

    Inapproximability of H-Transversal/Packing

    Get PDF
    Given an undirected graph G=(V,E) and a fixed pattern graph H with k vertices, we consider the H-Transversal and H-Packing problems. The former asks to find the smallest subset S of vertices such that the subgraph induced by V - S does not have H as a subgraph, and the latter asks to find the maximum number of pairwise disjoint k-subsets S1, ..., Sm such that the subgraph induced by each Si has H as a subgraph. We prove that if H is 2-connected, H-Transversal and H-Packing are almost as hard to approximate as general k-Hypergraph Vertex Cover and k-Set Packing, so it is NP-hard to approximate them within a factor of Omega(k) and Omega(k / polylog(k)) respectively. We also show that there is a 1-connected H where H-Transversal admits an O(log k)-approximation algorithm, so that the connectivity requirement cannot be relaxed from 2 to 1. For a special case of H-Transversal where H is a (family of) cycles, we mention the implication of our result to the related Feedback Vertex Set problem, and give a different hardness proof for directed graphs

    Inapproximability for Antiferromagnetic Spin Systems in the Tree Non-Uniqueness Region

    Full text link
    A remarkable connection has been established for antiferromagnetic 2-spin systems, including the Ising and hard-core models, showing that the computational complexity of approximating the partition function for graphs with maximum degree D undergoes a phase transition that coincides with the statistical physics uniqueness/non-uniqueness phase transition on the infinite D-regular tree. Despite this clear picture for 2-spin systems, there is little known for multi-spin systems. We present the first analog of the above inapproximability results for multi-spin systems. The main difficulty in previous inapproximability results was analyzing the behavior of the model on random D-regular bipartite graphs, which served as the gadget in the reduction. To this end one needs to understand the moments of the partition function. Our key contribution is connecting: (i) induced matrix norms, (ii) maxima of the expectation of the partition function, and (iii) attractive fixed points of the associated tree recursions (belief propagation). The view through matrix norms allows a simple and generic analysis of the second moment for any spin system on random D-regular bipartite graphs. This yields concentration results for any spin system in which one can analyze the maxima of the first moment. The connection to fixed points of the tree recursions enables an analysis of the maxima of the first moment for specific models of interest. For k-colorings we prove that for even k, in the tree non-uniqueness region (which corresponds to k<D) it is NP-hard, unless NP=RP, to approximate the number of colorings for triangle-free D-regular graphs. Our proof extends to the antiferromagnetic Potts model, and, in fact, to every antiferromagnetic model under a mild condition
    corecore