113 research outputs found

    Inapproximability of Truthful Mechanisms via Generalizations of the VC Dimension

    Full text link
    Algorithmic mechanism design (AMD) studies the delicate interplay between computational efficiency, truthfulness, and optimality. We focus on AMD's paradigmatic problem: combinatorial auctions. We present a new generalization of the VC dimension to multivalued collections of functions, which encompasses the classical VC dimension, Natarajan dimension, and Steele dimension. We present a corresponding generalization of the Sauer-Shelah Lemma and harness this VC machinery to establish inapproximability results for deterministic truthful mechanisms. Our results essentially unify all inapproximability results for deterministic truthful mechanisms for combinatorial auctions to date and establish new separation gaps between truthful and non-truthful algorithms

    Implementation in Advised Strategies: Welfare Guarantees from Posted-Price Mechanisms When Demand Queries Are NP-Hard

    Get PDF
    State-of-the-art posted-price mechanisms for submodular bidders with mm items achieve approximation guarantees of O((loglogm)3)O((\log \log m)^3) [Assadi and Singla, 2019]. Their truthfulness, however, requires bidders to compute an NP-hard demand-query. Some computational complexity of this form is unavoidable, as it is NP-hard for truthful mechanisms to guarantee even an m1/2εm^{1/2-\varepsilon}-approximation for any ε>0\varepsilon > 0 [Dobzinski and Vondr\'ak, 2016]. Together, these establish a stark distinction between computationally-efficient and communication-efficient truthful mechanisms. We show that this distinction disappears with a mild relaxation of truthfulness, which we term implementation in advised strategies, and that has been previously studied in relation to "Implementation in Undominated Strategies" [Babaioff et al, 2009]. Specifically, advice maps a tentative strategy either to that same strategy itself, or one that dominates it. We say that a player follows advice as long as they never play actions which are dominated by advice. A poly-time mechanism guarantees an α\alpha-approximation in implementation in advised strategies if there exists poly-time advice for each player such that an α\alpha-approximation is achieved whenever all players follow advice. Using an appropriate bicriterion notion of approximate demand queries (which can be computed in poly-time), we establish that (a slight modification of) the [Assadi and Singla, 2019] mechanism achieves the same O((loglogm)3)O((\log \log m)^3)-approximation in implementation in advised strategies

    Mechanism Design for Perturbation Stable Combinatorial Auctions

    Full text link
    Motivated by recent research on combinatorial markets with endowed valuations by (Babaioff et al., EC 2018) and (Ezra et al., EC 2020), we introduce a notion of perturbation stability in Combinatorial Auctions (CAs) and study the extend to which stability helps in social welfare maximization and mechanism design. A CA is γ-stable\gamma\textit{-stable} if the optimal solution is resilient to inflation, by a factor of γ1\gamma \geq 1, of any bidder's valuation for any single item. On the positive side, we show how to compute efficiently an optimal allocation for 2-stable subadditive valuations and that a Walrasian equilibrium exists for 2-stable submodular valuations. Moreover, we show that a Parallel 2nd Price Auction (P2A) followed by a demand query for each bidder is truthful for general subadditive valuations and results in the optimal allocation for 2-stable submodular valuations. To highlight the challenges behind optimization and mechanism design for stable CAs, we show that a Walrasian equilibrium may not exist for γ\gamma-stable XOS valuations for any γ\gamma, that a polynomial-time approximation scheme does not exist for (2ϵ)(2-\epsilon)-stable submodular valuations, and that any DSIC mechanism that computes the optimal allocation for stable CAs and does not use demand queries must use exponentially many value queries. We conclude with analyzing the Price of Anarchy of P2A and Parallel 1st Price Auctions (P1A) for CAs with stable submodular and XOS valuations. Our results indicate that the quality of equilibria of simple non-truthful auctions improves only for γ\gamma-stable instances with γ3\gamma \geq 3
    corecore