351 research outputs found

    Anti-angiogenic nanotherapy inhibits airway remodeling and hyper-responsiveness of dust mite triggered asthma in the Brown Norway rat

    Get PDF
    Although angiogenesis is a hallmark feature of asthmatic inflammatory responses, therapeutic anti-angiogenesis interventions have received little attention. Objective: Assess the effectiveness of anti-angiogenic Sn2 lipase-labile prodrugs delivered via α(v)β(3)-micellar nanotherapy to suppress microvascular expansion, bronchial remodeling, and airway hyper-responsiveness in Brown Norway rats exposed to serial house dust mite (HDM) inhalation challenges. Results: Anti-neovascular effectiveness of α(v)β(3)-mixed micelles incorporating docetaxel-prodrug (Dxtl-PD) or fumagillin-prodrug (Fum-PD) were shown to robustly suppress neovascular expansion (p<0.01) in the upper airways/bronchi of HDM rats using simultaneous (19)F/(1)H MR neovascular imaging, which was corroborated by adjunctive fluorescent microscopy. Micelles without a drug payload (α(v)β(3)-No-Drug) served as a carrier-only control. Morphometric measurements of HDM rat airway size (perimeter) and vessel number at 21d revealed classic vascular expansion in control rats but less vascularity (p<0.001) after the anti-angiogenic nanotherapies. CD31 RNA expression independently corroborated the decrease in airway microvasculature. Methacholine (MCh) induced respiratory system resistance (Rrs) was high in the HDM rats receiving α(v)β(3)-No-Drug micelles while α(v)β(3)-Dxtl-PD or α(v)β(3)-Fum-PD micelles markedly and equivalently attenuated airway hyper-responsiveness and improved airway compliance. Total inflammatory BAL cells among HDM challenged rats did not differ with treatment, but α(v)β(3)(+ )macrophages/monocytes were significantly reduced by both nanotherapies (p<0.001), most notably by the α(v)β(3)-Dxtl-PD micelles. Additionally, α(v)β(3)-Dxtl-PD decreased BAL eosinophil and α(v)β(3)(+ )CD45(+) leukocytes relative to α(v)β(3)-No-Drug micelles, whereas α(v)β(3)-Fum-PD micelles did not. Conclusion: These results demonstrate the potential of targeted anti-angiogenesis nanotherapy to ameliorate the inflammatory hallmarks of asthma in a clinically relevant rodent model

    A novel in vivo tumor oxygen profiling assay: Combining functional and molecular imaging with multivariate mathematical modeling

    Get PDF
    Purpose: The objective of this study is to develop and test a novel high spatio-temporal in vivo assay to quantify tumor oxygenation and hypoxia. The assay implements a biophysical model of oxygen transport to fuse parameters acquired from in vivo functional and molecular imaging modalities. ^ Introduction: Tumor hypoxia plays an important role in carcinogenesis. It triggers pathological angiogenesis to supply more oxygen to the tumor cells and promotes cancer cell metastasis. Preclinical and clinical evidence show that anti-angiogenic treatment is capable of normalizing the tumor vasculature both structurally and functionally. The resulting normalized vasculature provides a more efficient and uniform microcirculation that enhances oxygen and drug delivery to the tumor cells and improves second-line treatments such as traditional radiation or chemotherapy. Early studies using the overall or average tumor hypoxia as a prognostic biomarker of anti-angiogenic therapy efficacy was ambivalent; however, recent studies have discovered that the etiology of hypoxia and its heterogeneity could be used as reliable prognostic biomarkers. The capability to longitudinally map tumor hypoxia with high spatial and temporal resolution has the potential to enhance fundamental cancer research and ultimately cancer patient care. ^ Method: A novel methodology to identify and characterize tumor hypoxia by fusing the physiological hemodynamic parametric maps obtained from functional and molecular imaging modalities and technique using a modified Krogh model of oxygen transport (MPO2) was developed. First, simulations studies were performed to validate this technique. Microscopy data of tumor and brain tissue (control) provided both the vasculature and rheology data. A Green\u27s function algorithm was used to solve the ordinary differential equation and calculate the oxygen profile at a microscopic scale (15 μm) (GPO2), which was used as a reference. From this data, simulated physiological maps (perfusion, fractional plasma volume, fractional interstitial volume) and hemoglobin status (oxygen saturation, hemoglobin concentration) was used as input to MPO2 and used to calculate pO2 levels as a function of scanner spatial resolution and noise. Second, MPO2 was compared to pO2 measurements in xenograft breast tumors using OxyLite oxygen sensor as a Gold Standard, where DCE-CT and PCT-S images were acquired to obtain hemodynamic images. Finally, the vascular physiology measurements obtained from an anti-angiogenic therapeutic study in pancreatic tumors was applied to MPO2 and compared to therapeutic response. ^ Results: The simulation results using Green\u27s function pO2 as standard showed that the MPO2 model performance was dependent on the spatial resolution (voxel size) of the images. Sensitivity and error analysis of this model were also investigated in this study. These oxygen transport simulations results suggest the oxygen saturation and hemoglobin concentration were two key factors in tissue oxygenation, and concomitant with blood perfusion and tumor metabolic rate. Comparisons of the pO2 profile obtained from MPO2 and OxyLite probe in MCF7 tumor model demonstrated a significant correlation and approached a slope of one (after accounting for a few outliers). Simulation studies implementing the physiological data obtained from the anti-angiogenic therapeutic study in pancreatic tumors using the MPO2 model agreed with the experimental findings that blood perfusion is a valuable prognostic biomarker in therapeutic efficacy. This model also predicted the oxygenation improvement difference from two vascular renormalization modes (topological normalization and geometrical normalization). ^ Conclusion: The results from the simulation and in vivo studies demonstrated the feasibility of this novel hypoxia assay. Simulation results of the pancreatic tumors provide an example of the impact the MPO2 model in conjunction with imaging can provide when evaluating the therapeutic significance of various normalization modes in anti-angiogenic therapy, and suggests potential approaches to further improve anti-angiogenic therapy efficacy

    Tumor vasculature and microenvironment during progression and treatment : insights from optical microscopy

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, February 2010.Vita. Cataloged from PDF version of thesis.Includes bibliographical references.In addition to cancer cells, solid tumors consist of a variety of cell types and tissues defining a complex microenvironment that influences disease progression and response to therapy. To fully characterize and probe the tumor microenvironment, new tools are needed to quantitatively assess microanatomical and physiological changes during tumor growth and treatment. Particularly important, is the metabolic microenvironment defined in tumors by hypoxia (low p02) and acidity (low pH). These parameters have been shown to influence response to radiation therapy and chemotherapy. However, very little is known about spatio-temporal changes in p02 and pH during tumor progression and therapy. By modifying the technique of intravital multiphoton microscopy (MPM) to perform phosphorescence quenching microscopy, I developed a non-invasive method to quantify oxygen tension (p02) in living tissue at high three-dimensional resolution. To probe functional changes in the metabolic microenvironment, I measured in vivo P02 during tumor growth and antiangiogenic (vascular targeted) treatment in preclinical tumor models. Nanotechnology is rapidly emerging as an important source of biocompatible tools that may shape the future of medical practice. Fluorescent semiconductor nanocrystals (NCs), also known as quantum dots, are a powerful tool for biological imaging, cellular targeting and molecular sensing.(cont.) I adapted novel fluorescence resonance energy transfer (FRET) -based nanocrystal (NC) biosensors for use with MPM to qualitatively measure in vivo extracellular pH in tumors at high-resolution. While intravital multiphoton microscopy demonstrates utility and adaptability in the study of cancer and response to therapy, the requisite high numerical aperture and exogenous contrast agents result in a limited capacity to investigate substantial tissue volumes or probe dynamic changes repeatedly over prolonged periods. By applying optical frequency domain imaging (OFDI) as an intravital microscopic tool, the technical limitations of multiphoton microscopy can be circumvented providing unprecedented access to previously unexplored, critically important aspects of tumor biology. Using entirely intrinsic mechanisms of contrast within murine tumor models, OFDI is able to simultaneously, rapidly, and repeatedly probe the microvasculature, lymphatic vessels, and tissue microstructure and composition over large volumes. Using OFDI-based techniques, measurements of tumor angiogenesis, lymphangiogenesis, tissue viability and both vascular and cellular responses to therapy were demonstrated, thereby highlighting the potential of OFDI to facilitate the exploration of pathophysiological processes and the evaluation of treatment strategies.by Ryan M. Lanning.Ph.D

    The Combined Effect of In-Situ Tumor and Irradiation on Peritumoral Brain Vasculature

    Get PDF
    In the USA, 200,000 brain tumors are diagnosed each year with glioma representing 8.4% of the 200,000. The standard treatment for glioma consists of surgical resection, when possible, followed by radiation therapy (RT) and/or chemotherapy. Radiation therapy is one of the most effective treatments of brain tumors; however, the therapeutic ratio of RT is limited by damage to the normal tissue. We hypothesize that tumor growth has an adverse effect on the peritumoral tissue through the angiogenic/inflammatory environment it creates rendering it susceptible to further damage by RT which may be prevented by using anti-angiogenic/anti-inflammatory agents. We have developed a rat C6 glioma brain tumor model to study the combination of tumor presence and radiation treatment on the peritumoral region both at early and late time points. We have also used this model to test the effect of thalidomide on limiting radiation toxicity to the normal tissue while not interfering with radiation efficacy. Intravital microscopy was used in combination with a cranial window brain tumor model to assess the effect of glioma presence on neighboring tissue with and without RT (40Gy total, 8Gy/day starting on day 5 post-implant/surgery) and when RT was administered in combination with thalidomide (100mg/kg/day). Permeability of the blood-brain barrier (BBB) was determined by measuring the rate of extravasation of 3kDa Texas-Red dextran from the vasculature into the tissue. Leukocytes were stained using an intravenous injection of Rhodamine 6G and leukocyte interactions, an indicator of inflammation, were counted in venules ranging in size from 45 to 90μm. Staining for vascular endothelial growth factor (VEGF) and glial fibrillary acidic protein (GFAP), a marker of astrocytes, was also performed. Our studies show that the presence of the tumor alone caused quantifiable changes in BBB permeability, and caused an increased in vascular endothelial growth factor (VEGF) protein expression in the peritumoral region. Astrogliosis, an increase in reactive astrocytes associated with inflammation, was detected in the peritumoral region and contralateral to the tumor. RT of the implanted tumors caused a significant increase in BBB permeability and in adhered leukocytes in the peritumoral region, compared to the sham implant group. In addition following RT, VEGF increased both in the peritumoral region and in the middle of the tumor. Astrogliosis was also significantly higher in the tumor implant + RT animals compared to sham and tumor implanted animals. At 66 days post tumor-implantation the RT the BBB permeability and astrogliosis were still significantly higher compared to sham implanted animals. We have also evaluated thalidomide as a potential anti-angiogenic/anti-inflammatory agent with the prospective to protect normal tissue and have shown that it had limited effects in a rat C6 brain tumor model and it interfered with RT tumor treatment efficacy. In addition, at 66 post tumor implant there was a significantly higher incidence of astrogliosis, BBB permeability, and adhered leukocyte counts in the animals treated with thalidomide compared to sham implanted animals. In this work, we have developed and characterized a new rat radiation brain tumor model to study the effect of a brain tumor and RT on the normal brain tissue at acute and late time points. We have quantified the effect of tumor presence on the peritumoral microvasculature and observed a significant increase in vascular permeability but no significant effect on leukocyte interactions. The lack of leukocyte interactions might indicate that the increase in permeability is associated with the angiogenic signaling induced by tumor presence. In support of this conclusion, we observed an increased VEGF expression in the peritumoral region. The combination of RT and tumor presence had a greater damaging effect on peritumoral BBB integrity measured by an increase in leukocyte interactions and permeability which could not be inhibited by using thalidomide. Furthermore, the regression of tumor after RT and the achievement of 100% survival at 65 days post implant have allowed us to investigate late radiation damage

    A brief account of nanoparticle contrast agents for photoacoustic imaging

    Get PDF
    Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds

    Magnetic Resonance Imaging Studies of Angiogenesis and Stem Cell Implantations in Rodent Models of Cerebral Lesions

    Get PDF
    Molecular biology and stem cell research have had an immense impact on our understanding of neurological diseases, for which little or no therapeutic options exist today. Manipulation of the underlying disease-specific molecular and cellular events promises more efficient therapy. Angiogenesis, i.e. the regrowth of new vessels from an existing vascular network, has been identified as a key contributor for the progression of tumor and, more recently, for regeneration after stroke. Donation of stem cells has proved beneficial to treat cerebral lesions. However, before angiogenesis-targeted and stem cell therapies can safely be used in patients, underlying biological processes need to be better understood in animal models. Noninvasive imaging is essential in order to follow biological processes or stem cell fate in both space and time. We optimized steady state contrast enhanced magnetic resonance imaging (SSCE MRI) to monitor vascular changes in rodent models of tumor and stroke. A modification of mathematical modeling of MR signal from the vascular network allowed for the first time simultaneous measurements of relaxation time T2 and SSCE MRI derived blood volume, vessel size, and vessel density. Limitations of SSCE MRI in tissues with high blood volume and non-cylindrically shaped vessels were explored. SSCE MRI detected angiogenesis and response to anti-angiogenic treatment in two rodent tumor models. In both tumor models, reduction of blood volume in small vessels and a shift towards larger vessels was observed upon treatment. After stroke, decreased vessel density and increased vessel size was found, which was most pronounced one week after the infarct. This is in agreement with two initial, recently published clinical studies. Overall, very little signs of angiogenesis were found. Furthermore, superparamagnetic iron oxide (SPIO) labels were used to study neural stem cells (NSCs) in vivo with MRI. SPIO labeling revealed a decrease in volume of intracerebral grafts over 4 months, assessed by T2* weighted MRI. Since SPIO labels are challenging to quantify and their MR contrast can easily be confounded, we explored the potential of in vivo 19F MRI of 19F labeled NSCs. Hardware was developed for in vitro and in vivo 19F MRI. NSCs were labeled with little effect on cell function and in vivo detection limits were determined at ~10,000 cells within 1 h imaging time. A correction for the inhomogeneous magnetic field profile of surface coils was validated in vitro and applied for both sensitive and quantitative in vivo cell imaging. As external MRI labels do not provide information on NSC function we combined 19F MRI with bioluminescence imaging (BLI). The BLI signal allowed quantification of viable cells whereas 19F MRI provided graft location and density in 3D over 4 weeks both in the healthy and stroke brain. A massive decrease in number of viable cells was detected independent of the microenvironment. This indicates that functional recovery reported in many studies of NSC implantation after stroke, is rather due to release of factors by NSCs than direct tissue replacement. In light of these indirect effects, combination of the imaging methods developed in this dissertation with other functional and structural imaging methods is suggested in order to further elucidate interactions of NSCs with the vasculature

    EARLY ASSESSMENT OF TUMOR RESPONSE TO RADIATION THERAPY USING HIGH-RESOLUTION CONTRAST ENHANCED ULTRASOUND IMAGING TECHNIQUES AND APPLICATIONS FOR PROSTATE CANCER

    Get PDF
    Traditional anatomical imaging for cancer diagnosis and assessing response to therapy is limited to just the superficial appearance of a tumor. A functional imaging approach, which takes a closer at look various microenvironments within the tumor, is likely to offer a more holistic view of the tumor behavior and response to treatment. Acoustic Angiography is a novel super-harmonic contrast ultrasound imaging technique that utilizes a dual-frequency transducer to quickly generate high-resolution 3D microvascular images with exceptionally high contrast-to-tissue ratio. Herein, we demonstrate the ability of Acoustic Angiography to quantify tumor microvascular features and investigate their changes after therapeutic doses of radiation therapy in a tumor bearing rodent model. We then demonstrate using functional longitudinal data analysis that quantified microvascular features can be used to predict radiation therapy response with limited time point measurements. Prostate cancer is the most common cancer in men, resulting in near 30,000 deaths a year in the United States alone. Current diagnostic and staging techniques for prostate cancer have been shown to have low sensitivity and specificity, limiting early detection and intervention. There is potential for improving ultrasound imaging techniques for aiding in prostate cancer detection and biopsy guidance with Acoustic Angiography imaging. The clinical translation of Acoustic Angiography hinges on certain design improvements, primarily increased depth of penetration. The last part of this dissertation discusses the development of a dual-frequency linear array transducer for Acoustic Angiography. This dissertation consists of two primary hypotheses: 1) Acoustic Angiography can be used to quantify changes in tumor microvascular features and predict radiation treatment response earlier than using tumor volume alone. 2) Acoustic Angiography using a dual-frequency linear array transducer is suitable for prostate cancer imaging.Doctor of Philosoph

    Molecular Imaging

    Get PDF
    The present book gives an exceptional overview of molecular imaging. Practical approach represents the red thread through the whole book, covering at the same time detailed background information that goes very deep into molecular as well as cellular level. Ideas how molecular imaging will develop in the near future present a special delicacy. This should be of special interest as the contributors are members of leading research groups from all over the world

    In Vivo Photoacoustic Tomography of Chemicals: High-Resolution Functional and Molecular Optical Imaging at New Depths

    Get PDF
    High-resolution volumetric optical imaging modalities, such as confocal microscopy, two-photon microscopy, and optical coherence tomography, have become increasingly important in the biomedical imaging field. However, due to strong light scattering, the penetration depths of these imaging modalities are limited to the optical transport mean free path in biological tissues, for example, ∼1 mm in the skin. Photoacoustic tomography (PAT), an emerging hybrid imaging modality that can provide strong endogenous and exogenous optical absorption contrasts with high ultrasonic spatial resolution using the photoacoustic (PA) effect, has overcome the fundamental depth limitation. The image resolution is scalable with the ultrasonic frequency. The imaging depth is limited to the reach of photons and up to a few centimeters deep in biological tissues. This Review will focus on the following aspects of PAT described in works published from 2003 to 2009: (1) multiscale PAT systems, (2) morphological and functional PAT using intrinsic contrasts (hemoglobin or melanin), and (3) functional and molecular PAT using exogenous contrast agents (organic dyes, nanoparticles, reporter genes, or fluorescence proteins)
    corecore