1,387 research outputs found

    Towards artificial situation awareness by autonomous vehicles

    Get PDF
    This paper presents a novel approach to artificial situation awareness for an autonomous vehicle operating in complex dynamic environments populated by other agents. A key aspect of situation awareness is the use of mental models to predict future states of the environment, allowing safe and rational routing decisions to be made. We present a technique for predicting future discrete state transitions (such as the commencement of a turn) by other agents, based upon an uncertain mental model. Predictions take the form of univariate Gaussian Probability Density Functions which capture the inherent uncertainty in transition time whilst still providing great benefit to a decision making system. The prediction distributions are compared with Monte Carlo simulations and show an excellent correlation over long prediction horizons

    Contextual information aided target tracking and path planning for autonomous ground vehicles

    Get PDF
    Recently, autonomous vehicles have received worldwide attentions from academic research, automotive industry and the general public. In order to achieve a higher level of automation, one of the most fundamental requirements of autonomous vehicles is the capability to respond to internal and external changes in a safe, timely and appropriate manner. Situational awareness and decision making are two crucial enabling technologies for safe operation of autonomous vehicles. This thesis presents a solution for improving the automation level of autonomous vehicles in both situational awareness and decision making aspects by utilising additional domain knowledge such as constraints and influence on a moving object caused by environment and interaction between different moving objects. This includes two specific sub-systems, model based target tracking in environmental perception module and motion planning in path planning module. In the first part, a rigorous Bayesian framework is developed for pooling road constraint information and sensor measurement data of a ground vehicle to provide better situational awareness. Consequently, a new multiple targets tracking (MTT) strategy is proposed for solving target tracking problems with nonlinear dynamic systems and additional state constraints. Besides road constraint information, a vehicle movement is generally affected by its surrounding environment known as interaction information. A novel dynamic modelling approach is then proposed by considering the interaction information as virtual force which is constructed by involving the target state, desired dynamics and interaction information. The proposed modelling approach is then accommodated in the proposed MTT strategy for incorporating different types of domain knowledge in a comprehensive manner. In the second part, a new path planning strategy for autonomous vehicles operating in partially known dynamic environment is suggested. The proposed MTT technique is utilized to provide accurate on-board tracking information with associated level of uncertainty. Based on the tracking information, a path planning strategy is developed to generate collision free paths by not only predicting the future states of the moving objects but also taking into account the propagation of the associated estimation uncertainty within a given horizon. To cope with a dynamic and uncertain road environment, the strategy is implemented in a receding horizon fashion

    CARLA+: An Evolution of the CARLA Simulator for Complex Environment Using a Probabilistic Graphical Model

    Get PDF
    In an urban and uncontrolled environment, the presence of mixed traffic of autonomous vehicles, classical vehicles, vulnerable road users, e.g., pedestrians, and unprecedented dynamic events makes it challenging for the classical autonomous vehicle to navigate the traffic safely. Therefore, the realization of collaborative autonomous driving has the potential to improve road safety and traffic efficiency. However, an obvious challenge in this regard is how to define, model, and simulate the environment that captures the dynamics of a complex and urban environment. Therefore, in this research, we first define the dynamics of the envisioned environment, where we capture the dynamics relevant to the complex urban environment, specifically, highlighting the challenges that are unaddressed and are within the scope of collaborative autonomous driving. To this end, we model the dynamic urban environment leveraging a probabilistic graphical model (PGM). To develop the proposed solution, a realistic simulation environment is required. There are a number of simulators—CARLA (Car Learning to Act), one of the prominent ones, provides rich features and environment; however, it still fails on a few fronts, for example, it cannot fully capture the complexity of an urban environment. Moreover, the classical CARLA mainly relies on manual code and multiple conditional statements, and it provides no pre-defined way to do things automatically based on the dynamic simulation environment. Hence, there is an urgent need to extend the off-the-shelf CARLA with more sophisticated settings that can model the required dynamics. In this regard, we comprehensively design, develop, and implement an extension of a classical CARLA referred to as CARLA+ for the complex environment by integrating the PGM framework. It provides a unified framework to automate the behavior of different actors leveraging PGMs. Instead of manually catering to each condition, CARLA+ enables the user to automate the modeling of different dynamics of the environment. Therefore, to validate the proposed CARLA+, experiments with different settings are designed and conducted. The experimental results demonstrate that CARLA+ is flexible enough to allow users to model various scenarios, ranging from simple controlled models to complex models learned directly from real-world data. In the future, we plan to extend CARLA+ by allowing for more configurable parameters and more flexibility on the type of probabilistic networks and models one can choose. The open-source code of CARLA+ is made publicly available for researchers

    F1/10: An Open-Source Autonomous Cyber-Physical Platform

    Get PDF
    In 2005 DARPA labeled the realization of viable autonomous vehicles (AVs) a grand challenge; a short time later the idea became a moonshot that could change the automotive industry. Today, the question of safety stands between reality and solved. Given the right platform the CPS community is poised to offer unique insights. However, testing the limits of safety and performance on real vehicles is costly and hazardous. The use of such vehicles is also outside the reach of most researchers and students. In this paper, we present F1/10: an open-source, affordable, and high-performance 1/10 scale autonomous vehicle testbed. The F1/10 testbed carries a full suite of sensors, perception, planning, control, and networking software stacks that are similar to full scale solutions. We demonstrate key examples of the research enabled by the F1/10 testbed, and how the platform can be used to augment research and education in autonomous systems, making autonomy more accessible

    INTELLIGENTE TRANSPORT SYSTEMEN ITS EN VERKEERSVEILIGHEID

    Get PDF
    This report discusses Intelligent Transport Systems (ITS). This generic term is used for a broad range of information-, control- and electronic technology that can be integrated in the road infrastructure and the vehicles themselves, saving lives, time and money bymonitoring and managing traffic flows, reducing conges-tion, avoiding accidents, etc. Because this report was written in the scope of the Policy Research Centre Mobility & Public Works, track Traffic Safety, it focuses on ITS systems from the traffic safety point of view. Within the whole range of ITS systems, two categories can be distinguished: autonomous and cooperative systems. Autonomous systems are all forms of ITS which operate by itself, and do not depend on the cooperation with other vehicles or supporting infrastructure. Example applications are blind spot detection using radar, electronic stability control, dynamic traffic management using variable road signs, emergency call, etc. Cooperative systems are ITS systems based on communication and cooperation, both between vehicles as between vehicles and infrastructure. Example applications are alerting vehicles approaching a traffic jam, exchanging data regarding hazardous road conditions, extended electronic brake light, etc. In some cases, autonomous systems can evolve to autonomous cooperative systems. ISA (Intelligent Speed Adaptation) is an example of this: the dynamic aspect as well as communication with infrastructure (eg Traffic lights, Variable Message Sign (VMS)...) can provide additional road safety. This is the clear link between the two parts of this report. The many ITS applications are an indicator of the high expectations from the government, the academic world and the industry regarding the possibilities made possible by both categories of ITS systems. Therefore, the comprehensive discussion of both of them is the core of this report. The first part of the report covering the autonomous systems treats two aspects: 1. Overview of European projects related to mobility and in particular to road safety 2. Overview for guidelines for the evaluation of ITS projects. Out of the wide range of diverse (autonomous) ITS applications a selection is made; this selection is focused on E Safety Forum and PreVENT. Especially the PreVent research project is interesting because ITS-applications have led to a number of concrete demonstration vehicles that showed - in protected and unprotected surroundings- that these ITS-applications are already technically useful or could be developed into useful products. The component “guidelines for the evaluation of ITS projects” outlines that the government has to have specific evaluation tools if the government has the ambition of using ITS-applications for road safety. Two projects -guidelines for the evaluation of ITS projects- are examined; a third evaluation method is only mentioned because this description shows that a specific targeting of the government can be desirable : 1. TRACE describes the guidelines for the evaluation of ITS projects which are useful for the evaluation of specific ITS-applications. 2. FITS contains Finnish guidelines for the evaluation of ITS project; FIS is an adaptation of methods used for evaluation of transport projects. 3. The third evaluation method for the evaluation of ITS projects is developed in an ongoing European research project, eImpact. eImpact is important because, a specific consultation of stake holders shows that the social importance of some techniques is underestimated. These preliminary results show that an appropriate guiding role for the government could be important. In the second part of this document the cooperative systems are discussed in depth. These systems enable a large number of applications with an important social relevance, both on the level of the environment, mobility and traffic safety. Cooperative systems make it possible to warn drivers in time to avoid collisions (e.g. when approaching the tail of a traffic jam, or when a ghost driver is detected). Hazardous road conditions can be automatically communicated to other drivers (e.g. after the detection of black ice or an oil trail by the ESP). Navigation systems can receive detailed real-time up-dates about the current traffic situation and can take this into account when calculating their routes. When a traffic distortion occurs, traffic centers can immediately take action and can actively influence the way that the traffic will be diverted. Drivers can be notified well in advance about approaching emergency vehicles, and can be directed to yield way in a uniform manner. This is just a small selection from the large number of applications that are made possible because of cooperative ITS systems, but it is very obvious that these systems can make a significant positive contribution to traffic safety. In literature it is estimated that the decrease of accidents with injuries of fatalities will be between 20% and 50% . It is not suprising that ITS systems receive a lot of attention for the moment. On an international level, a number of standards are being established regarding this topic. The International Telecommunications Uniont (ITU), Institute for Electrical and Electronics Engineers (IEEE), International Organization for Standardization (ISO), Association of Radio Industries and Business (ARIB) and European committee for standardization (CEN) are currently defining standards that describe different aspects of ITS systems. One of the names that is mostly mentioned in literature is the ISO TC204/WG16 Communications Architecture for Land Mobile environment (CALM) standard. It describes a framework that enables transparent (both for the application and the user) continuous communication through different communication media. Besides the innumerable standardization activities, there is a great number of active research projects. On European level, the most important are the i2010 Intelligent Car Initiative, the eSafety Forum, and the COMeSafety, the CVIS, the SAFESPOT, the COOPERS and the SEVECOM project. The i2010 Intelligent Car Initiative is an European initiative with the goal to halve the number of traffic casualties by 2010. The eSafety Forum is an initiative of the European Commission, industry and other stakeholders and targets the acceleration of development and deployment of safety-related ITS systems. The COMeSafety project supports the eSafety Forum on the field of vehicle-to-vehicle and vehicle-to-infrastructure communication. In the CVIS project, attention is given to both technical and non-technical issues, with the main goal to develop the first free and open reference implementation of the CALM architecture. The SAFEST project investigates which data is important for safety applications, and with which algorithmsthis data can be extracted from vehicles and infrastructure. The COOPERS project mainly targets communication between vehicles and dedicated roadside infrastructure. Finally, the SEVECOM project researches security and privacy issues. Besides the European projects, research is also conducted in the United States of America (CICAS and VII projects) and in Japan (AHSRA, VICS, Smartway, internetITS). Besides standardization bodies and governmental organizations, also the industry has a considerable interest in ITS systems. In the scope of their ITS activities, a number of companies are united in national and international organizations. On an international level, the best known names are the Car 2 Car Communication Consortium, and Ertico. The C2C CC unites the large European car manufacturers, and focuses on the development of an open standard for vehicle-to-vehicle and vehicle-to-infrastructure communications based on the already well established IEEE 802.11 WLAN standard. Ertico is an European multi-sector, public/private partnership with the intended purpose of the development and introduction of ITS systems. On a national level, FlandersDrive and The Telematics Cluster / ITS Belgium are the best known organizations. Despite the worldwide activities regarding (cooperative) ITS systems, there still is no consensus about the wireless technology to be used in such systems. This can be put down to the fact that a large number of suitable technologies exist or are under development. Each technology has its specific advantages and disadvantages, but no single technology is the ideal solution for every ITS application. However, the different candidates can be classified in three distinct categories. The first group contains solutions for Dedicated Short Range Communication (DSRC), such as the WAVE technology. The second group is made up of several cellular communication networks providing coverage over wide areas. Examples are GPRS (data communication using the GSM network), UMTS (faster then GPRS), WiMAX (even faster then UMTS) and MBWA (similar to WiMAX). The third group consists of digital data broadcast technologies such as RDS (via the current FM radio transmissions, slow), DAB and DMB (via current digital radio transmissions, quicker) and DVB-H (via future digital television transmissions for mobiledevices, quickest). The previous makes it clear that ITS systems are a hot topic right now, and they receive a lot of attention from the academic world, the standardization bodies and the industry. Therefore, it seems like that it is just a matter of time before ITS systems will find their way into the daily live. Due to the large number of suitable technologies for the implementation of cooperative ITS systems, it is very hard to define which role the government has to play in these developments, and which are the next steps to take. These issues were addressed in reports produced by the i2010 Intelligent Car Initiative and the CVIS project. Their state of the art overview revealed that until now, no country has successfully deployed a fully operational ITS system yet. Seven EU countries are the furthest and are already in the deployment phase: Sweden, Germany, the Netherlands, the United Kingdom, Finland, Spain and France. These countries are trailed by eight countries which are in the promotion phase: Denmark, Greece, Italy, Austria, Belgium,Norway, the Czech Republic and Poland. Finally, the last ten countries find themselves in the start-up phase: Estonia, Lithuania, Latvia, Slovenia, Slovakia, Hungary, Portugal, Switzerland, Ireland and Luxembourg. These European reports produced by the i2010 Intelligent Car Initiative and the CVIS project have defined a few policy recommendations which are very relevant for the Belgian and Flemish government. The most important recommendations for the Flemish government are: • Support awareness: research revealed that civilians consider ITS applications useful, but they are not really willing to pay for this technology. Therefore, it is important to convince the general public of the usefulness and the importance of ITS systems. • Fill the gaps: Belgium is situated in the promotion phase. This means that it should focus at identifying the missing stakeholders, and coordinating national and regional ITS activities. Here it is important that the research activities are coordinated in a national and international context to allow transfer of knowledge from one study to the next, as well as the results to be comparable. • Develop a vision: in the scope of ITS systems policies have to be defined regarding a large number of issues. For instance there is the question if ITS users should be educated, meaning that the use of ITS systems should be the subject of the drivers license exam. How will the regulations be for the technical inspection of vehicles equipped with ITS technology? Will ITS systems be deployed on a voluntary base, or will they e.g. be obliged in every new car? Will the services be offered by private companies, by the public authorities, or by a combination of them? Which technology will be used to implement ITS systems? These are just a few of the many questions where the government will have to develop a point of view for. • Policy coordination: ITS systems are a policy subject on an international, national and regional level. It is very important that these policy organizations can collaborate in a coordinated manner. • Iterative approach to policy development: developing policies for this complex matter is not a simple task. This asks for an iterative approach, where policy decisions are continuously refined and adjusted

    The comparative Situation Awareness performance of older (to younger) drivers

    Get PDF
    The overall aim of this thesis is to corroborate whether the Situation Awareness (SA) of older drivers is deficient to that of younger driving groups, due to the onset of age-related cognitive decrements. This is important to ascertain due to a presumed linkage between the concept and accident causation. In addition, the research undertaken to date to investigate this linkage has exclusively utilised rather artificial driving simulators and simulations. Thus there is a need for data from more ecologically valid methods. The research studies reported here have sought to preference on-road assessments (of different complexity), and to capture what information was selectively perceived, comprehended and reacted to; rather than, as in previous work, what was recalled. To achieve this, a Think aloud methodology was chosen to produce narratives of a driver s thoughts. This method was advantageously unobtrusiveness, but also flexible - it could additionally be used to compare an individual's SA to a driving performance measure, Hazard Perception. The driving-based studies undertaken found that for a relatively non-taxing route, an older driver group could produce cohesive awareness in parity with a younger driver group. However, the concepts from which that awareness was based upon drew more on general, direction based, concepts, in contrast to the younger group s focus on more specific, action based, concepts, and rearward and safety-related cues. For a more cognitively taxing route, the younger group produced significantly higher (p<0.024) individual SA-related scores than their older counterparts. But the concepts/cues both groups relied upon remained similar - particularly in regards to the ratio of those indicative of a rearward and/or a safety-related focus. In a video-based study, however, and in contrast, the older driver group s SA scores improved sufficient to outperform a younger group, but, despite this, not for video-based scores indicative of Hazard Perception (HP). In this latter regard, age-related decrements appeared to be more influential, as the older group felt they were under time pressure during a HP test. However, the difficulty this presented appeared to advantageously bring more attention and effort to the task, which were argued as important factors for the uplift in their SA scoring. The thesis also showed that older groups judgement of the actual complexity of a driving task could potentially be deficient to that of younger driver groups. This could cause problems as incorrect perceptions could deflate the relevance and cohesiveness of information being processing. In contrast, the perceived complexity of a task could bring a rise or fall in SA score for both groups. Such results raised questions as to the impact of cognitive decrements, relative to task difficulty and related effort whilst driving. It also provided evidence that Situation Awareness, rather than being uniformly good or bad, could, like any other psychological construct, be prone to change. These aspects were drawn together in a proposed model of driving SA

    Determination and measurement of factors which influence propensity to cycle to work

    Get PDF
    2.89% of the UK population cycled for the journey to work as measured by the census in 200I. This percentage is similar to the percentage from the 1991 census and indicates a levelling off in the decline that had been seen in the previous two decades in bicycle use for the journey to work, but does not demonstrate any increase in line with policy aspirations. Choice is a complex issue and related to a wide range of factors including socio-economic variables and the nature of transport infrastructure and the physical geography of an area. As well as the rational and measurable factors, there are many much more complex and subtle factors including the influences of culture and social norms. Changes to behaviour probably take an extended period of time and require a range Qf conditions to be appropriate before a positive choice can be made. Waldman (1977) undertook the last countrywide aggregate study of the variation in use of the bicycle for the journey to work, but a number of the variables he constructed were measured inappropriately, not the least of which was his measure for "danger", which he recommended for further study. It is widely considered that perception of risk from motor traffic is a reason why many people do not currently use the bicycle. This is only one measurable attribute and European bicycle planners consider network coherence, directness, attractiveness and comfort as other equally important issues when designing schemes to promote bicycle use. This research has used primary data collected on perceptions of risk. The particular contribution of the research is in the development of a methodology for the determination of perception of risk for a whole journey, including routes and junctions, and the extension of this methodology to create a measure for risk at an area wide level. Measures that have been found to be significant in relation to the use of the bicycle for the journey to work are car ownership, socio-economic classification, ethnicity, distance to work, condition of the highway pavement, highway network density and population density, hi lIiness, rainfall and mean temperature. In addition the length of bicycle lane, length of bus lane and length of traffic free route have also been found to be important in so far as it influences the perception of risk, which in turn influences the level of bicycle use. The length of route that is signed has also been found to be important. In a sample of four districts for which appropriate data is available, a seven fold increase in route length with cycle facilities, or signed route, would create conditions suitable for an increase in cycle use for the journey to work by a factor of the order of two. An elimination of highways with negative residual life would create conditions suitable for an increase of 10% in the number of bicycle trips for the journey to work

    Dynamic noise mapping based on fixed and mobile sound measurements

    Get PDF
    EURONOISE 2015, MAASTRICHT, PAYS-BAS, 01-/06/2015 - 03/06/2015This work introduces an approach for calculating dynamic noise maps on the basis of fixed as well as mobile sound measurements. The proposed approach extends the temporal and spatial resolution of the traditional noise map that is based on long-term equivalent levels, and is therefore well suited for the prediction of indicators that are more closely related to the perception of the acoustic quality of the urban environment. The approach uses a model based interpolation technique, and accounts for the presence of sources that are generally not considered in noise maps. On the one hand, data from fixed noise measurement stations is used to continuously adapt the parameters underlying the map to temporal changes due to variations in source strength and propagation conditions. On the other hand, data from mobile noise measurements is used to increase the spatial resolution of the map. As an illustration of this approach, the construction of a dynamic map of the 13th district of Parisis presented. A network of twenty-four fixed, intelligent sound measurement devices is installed in the area. Next to this, mobile sound measurements are performed at regular periods inside the case study area. For this, five measurement devices are carried by researchers performing walks through the area, logging instantaneous 1/3-octave band levels as well as GPS data, such that trajectories can be fully reconstructed afterwards
    • …
    corecore