4,122 research outputs found

    The listening talker: A review of human and algorithmic context-induced modifications of speech

    Get PDF
    International audienceSpeech output technology is finding widespread application, including in scenarios where intelligibility might be compromised - at least for some listeners - by adverse conditions. Unlike most current algorithms, talkers continually adapt their speech patterns as a response to the immediate context of spoken communication, where the type of interlocutor and the environment are the dominant situational factors influencing speech production. Observations of talker behaviour can motivate the design of more robust speech output algorithms. Starting with a listener-oriented categorisation of possible goals for speech modification, this review article summarises the extensive set of behavioural findings related to human speech modification, identifies which factors appear to be beneficial, and goes on to examine previous computational attempts to improve intelligibility in noise. The review concludes by tabulating 46 speech modifications, many of which have yet to be perceptually or algorithmically evaluated. Consequently, the review provides a roadmap for future work in improving the robustness of speech output

    Sound and noise

    Get PDF
    Sound and noise problems in space environment and human tolerance criteria at varying frequencies and intensitie

    Microphone Array Speech Enhancement Via Beamforming Based Deep Learning Network

    Get PDF
    In general, in-car speech enhancement is an application of the microphone array speech enhancement in particular acoustic environments. Speech enhancement inside the moving cars is always an interesting topic and the researchers work to create some modules to increase the quality of speech and intelligibility of speech in cars. The passenger dialogue inside the car, the sound of other equipment, and a wide range of interference effects are major challenges in the task of speech separation in-car environment. To overcome this issue, a novel Beamforming based Deep learning Network (Bf-DLN) has been proposed for speech enhancement. Initially, the captured microphone array signals are pre-processed using an Adaptive beamforming technique named Least Constrained Minimum Variance (LCMV). Consequently, the proposed method uses a time-frequency representation to transform the pre-processed data into an image. The smoothed pseudo-Wigner-Ville distribution (SPWVD) is used for converting time-domain speech inputs into images. Convolutional deep belief network (CDBN) is used to extract the most pertinent features from these transformed images. Enhanced Elephant Heard Algorithm (EEHA) is used for selecting the desired source by eliminating the interference source. The experimental result demonstrates the effectiveness of the proposed strategy in removing background noise from the original speech signal. The proposed strategy outperforms existing methods in terms of PESQ, STOI, SSNRI, and SNR. The PESQ of the proposed Bf-DLN has a maximum PESQ of 1.98, whereas existing models like Two-stage Bi-LSTM has 1.82, DNN-C has 1.75 and GCN has 1.68 respectively. The PESQ of the proposed method is 1.75%, 3.15%, and 4.22% better than the existing GCN, DNN-C, and Bi-LSTM techniques. The efficacy of the proposed method is then validated by experiments

    Towards More Efficient DNN-Based Speech Enhancement Using Quantized Correlation Mask

    Get PDF
    Many studies on deep learning-based speech enhancement (SE) utilizing the computational auditory scene analysis method typically employs the ideal binary mask or the ideal ratio mask to reconstruct the enhanced speech signal. However, many SE applications in real scenarios demand a desirable balance between denoising capability and computational cost. In this study, first, an improvement over the ideal ratio mask to attain more superior SE performance is proposed through introducing an efficient adaptive correlation-based factor for adjusting the ratio mask. The proposed method exploits the correlation coefficients among the noisy speech, noise and clean speech to effectively re-distribute the power ratio of the speech and noise during the ratio mask construction phase. Second, to make the supervised SE system more computationally-efficient, quantization techniques are considered to reduce the number of bits needed to represent floating numbers, leading to a more compact SE model. The proposed quantized correlation mask is utilized in conjunction with a 4-layer deep neural network (DNN-QCM) comprising dropout regulation, pre-training and noise-aware training to derive a robust and high-order mapping in enhancement, and to improve generalization capability in unseen conditions. Results show that the quantized correlation mask outperforms the conventional ratio mask representation and the other SE algorithms used for comparison. When compared to a DNN with ideal ratio mask as its learning targets, the DNN-QCM provided an improvement of approximately 6.5% in the short-time objective intelligibility score and 11.0% in the perceptual evaluation of speech quality score. The introduction of the quantization method can reduce the neural network weights to a 5-bit representation from a 32-bit, while effectively suppressing stationary and non-stationary noise. Timing analyses also show that with the techniques incorporated in the proposed DNN-QCM system to increase its compac..
    corecore