6,857 research outputs found

    Interactive Visual Analytics for Large-scale Particle Simulations

    Get PDF
    Particle based model simulations are widely used in scientific visualization. In cosmology, particles are used to simulate the evolution of dark matter in the universe. Clusters of particles (that have special statistical properties) are called halos. From a visualization point of view, halos are clusters of particles, each having a position, mass and velocity in three dimensional space, and they can be represented as point clouds that contain various structures of geometric interest such as filaments, membranes, satellite of points, clusters, and cluster of clusters. The thesis investigates methods for interacting with large scale data-sets represented as point clouds. The work mostly aims at the interactive visualization of cosmological simulation based on large particle systems. The study consists of three components: a) two human factors experiments into the perceptual factors that make it possible to see features in point clouds; b) the design and implementation of a user interface making it possible to rapidly navigate through and visualize features in the point cloud, c) software development and integration to support visualization

    Cinema Darkroom: A Deferred Rendering Framework for Large-Scale Datasets

    Full text link
    This paper presents a framework that fully leverages the advantages of a deferred rendering approach for the interactive visualization of large-scale datasets. Geometry buffers (G-Buffers) are generated and stored in situ, and shading is performed post hoc in an interactive image-based rendering front end. This decoupled framework has two major advantages. First, the G-Buffers only need to be computed and stored once---which corresponds to the most expensive part of the rendering pipeline. Second, the stored G-Buffers can later be consumed in an image-based rendering front end that enables users to interactively adjust various visualization parameters---such as the applied color map or the strength of ambient occlusion---where suitable choices are often not known a priori. This paper demonstrates the use of Cinema Darkroom on several real-world datasets, highlighting CD's ability to effectively decouple the complexity and size of the dataset from its visualization

    Visuelle Analyse großer Partikeldaten

    Get PDF
    Partikelsimulationen sind eine bewährte und weit verbreitete numerische Methode in der Forschung und Technik. Beispielsweise werden Partikelsimulationen zur Erforschung der Kraftstoffzerstäubung in Flugzeugturbinen eingesetzt. Auch die Entstehung des Universums wird durch die Simulation von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmengen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln, die sich über die Zeit bewegen und miteinander interagieren. Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation und Analyse wissenschaftlicher Datensätze sowie der zugrundeliegenden Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit einer regulären Topologie. Im Gegensatz hierzu bewegen sich Partikel frei durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in ein reguläres eulersches Bezugssystem, wie beispielsweise in ein uniformes Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln jedoch mit einem erheblichen Aufwand verbunden. Darüber hinaus führt diese Konversion meist zu einem Verlust der Präzision bei gleichzeitig erhöhtem Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visualisierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse großer Partikeldaten

    Void-and-Cluster Sampling of Large Scattered Data and Trajectories

    Full text link
    We propose a data reduction technique for scattered data based on statistical sampling. Our void-and-cluster sampling technique finds a representative subset that is optimally distributed in the spatial domain with respect to the blue noise property. In addition, it can adapt to a given density function, which we use to sample regions of high complexity in the multivariate value domain more densely. Moreover, our sampling technique implicitly defines an ordering on the samples that enables progressive data loading and a continuous level-of-detail representation. We extend our technique to sample time-dependent trajectories, for example pathlines in a time interval, using an efficient and iterative approach. Furthermore, we introduce a local and continuous error measure to quantify how well a set of samples represents the original dataset. We apply this error measure during sampling to guide the number of samples that are taken. Finally, we use this error measure and other quantities to evaluate the quality, performance, and scalability of our algorithm.Comment: To appear in IEEE Transactions on Visualization and Computer Graphics as a special issue from the proceedings of VIS 201

    ParaView + Alya + D8tree: Integrating high performance computing and high performance data analytics

    Get PDF
    Large scale time-dependent particle simulations can generate massive amounts of data, making it so that storing the results is often the slowest phase and the primary time bottleneck of the simulation. Furthermore, analysing this amount of data with traditional tools has become increasingly challenging, and it is often virtually impossible to have a visual representation of the full set. We propose a novel architecture that integrates an HPC-based multi-physics simulation code, a NoSQL database, and a data analysis and visualisation application. The goals are two: On the one hand, we aim to speed up the simulations taking advantage of the scalability of key-value data stores, while at the same time enabling real-time approximated data visualisation and interactive exploration. On the other hand, we want to make it efficient to explore and analyse the large data base of results produced. Therefore, this work represents a clear example of integrating High Performance Computing with High Performance Data Analytics. Our prototype proves the validity of our approach and shows great performance improvements. Indeed, we reduced by 67.5% the time to store the simulation while we made real-time queries run 52 times faster than alternative solutions.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 720270 (HBP SGA1). It is also partially supported by the grant SEV-2011-00067 of Severo Ochoa Program, the TIN2015-65316-P project, with funding from the Spanish Ministry of Economy and Competitivity, the European Union FEDER funds, and the SGR 2014-SGR-1051.Peer ReviewedPostprint (published version

    Stochastic Volume Rendering of Multi-Phase SPH Data

    Get PDF
    In this paper, we present a novel method for the direct volume rendering of large smoothed‐particle hydrodynamics (SPH) simulation data without transforming the unstructured data to an intermediate representation. By directly visualizing the unstructured particle data, we avoid long preprocessing times and large storage requirements. This enables the visualization of large, time‐dependent, and multivariate data both as a post‐process and in situ. To address the computational complexity, we introduce stochastic volume rendering that considers only a subset of particles at each step during ray marching. The sample probabilities for selecting this subset at each step are thereby determined both in a view‐dependent manner and based on the spatial complexity of the data. Our stochastic volume rendering enables us to scale continuously from a fast, interactive preview to a more accurate volume rendering at higher cost. Lastly, we discuss the visualization of free‐surface and multi‐phase flows by including a multi‐material model with volumetric and surface shading into the stochastic volume rendering
    corecore