3,855 research outputs found

    In-silico prediction of disorder content using hybrid sequence representation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intrinsically disordered proteins play important roles in various cellular activities and their prevalence was implicated in a number of human diseases. The knowledge of the content of the intrinsic disorder in proteins is useful for a variety of studies including estimation of the abundance of disorder in protein families, classes, and complete proteomes, and for the analysis of disorder-related protein functions. The above investigations currently utilize the disorder content derived from the per-residue disorder predictions. We show that these predictions may over-or under-predict the overall amount of disorder, which motivates development of novel tools for direct and accurate sequence-based prediction of the disorder content.</p> <p>Results</p> <p>We hypothesize that sequence-level aggregation of input information may provide more accurate content prediction when compared with the content extracted from the local window-based residue-level disorder predictors. We propose a novel predictor, DisCon, that takes advantage of a small set of 29 custom-designed descriptors that aggregate and hybridize information concerning sequence, evolutionary profiles, and predicted secondary structure, solvent accessibility, flexibility, and annotation of globular domains. Using these descriptors and a ridge regression model, DisCon predicts the content with low, 0.05, mean squared error and high, 0.68, Pearson correlation. This is a statistically significant improvement over the content computed from outputs of ten modern disorder predictors on a test dataset with proteins that share low sequence identity with the training sequences. The proposed predictive model is analyzed to discuss factors related to the prediction of the disorder content.</p> <p>Conclusions</p> <p>DisCon is a high-quality alternative for high-throughput annotation of the disorder content. We also empirically demonstrate that the DisCon's predictions can be used to improve binary annotations of the disordered residues from the real-value disorder propensities generated by current residue-level disorder predictors. The web server that implements the DisCon is available at <url>http://biomine.ece.ualberta.ca/DisCon/</url>.</p

    Molecular Dynamics of "Fuzzy" Transcriptional Activator-Coactivator Interactions

    Get PDF
    Transcriptional activation domains (ADs) are generally thought to be intrinsically unstructured, but capable of adopting limited secondary structure upon interaction with a coactivator surface. The indeterminate nature of this interface made it hitherto difficult to study structure/function relationships of such contacts. Here we used atomistic accelerated molecular dynamics (aMD) simulations to study the conformational changes of the GCN4 AD and variants thereof, either free in solution, or bound to the GAL11 coactivator surface. We show that the AD-coactivator interactions are highly dynamic while obeying distinct rules. The data provide insights into the constant and variable aspects of orientation of ADs relative to the coactivator, changes in secondary structure and energetic contributions stabilizing the various conformers at different time points. We also demonstrate that a prediction of α-helical propensity correlates directly with the experimentally measured transactivation potential of a large set of mutagenized ADs. The link between α-helical propensity and the stimulatory activity of ADs has fundamental practical and theoretical implications concerning the recruitment of ADs to coactivators

    Investigation of G72 (DAOA) expression in the human brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polymorphisms at the G72/G30 locus on chromosome 13q have been associated with schizophrenia or bipolar disorder in more than ten independent studies. Even though the genetic findings are very robust, the physiological role of the predicted G72 protein has thus far not been resolved. Initial reports suggested G72 as an activator of D-amino acid oxidase (DAO), supporting the glutamate dysfunction hypothesis of schizophrenia. However, these findings have subsequently not been reproduced and reports of endogenous human G72 mRNA and protein expression are extremely limited. In order to better understand the function of this putative schizophrenia susceptibility gene, we attempted to demonstrate G72 mRNA and protein expression in relevant human brain regions.</p> <p>Methods</p> <p>The expression of G72 mRNA was studied by northern blotting and semi-quantitative SYBR-Green and Taqman RT-PCR. Protein expression in human tissue lysates was investigated by western blotting using two custom-made specific anti-G72 peptide antibodies. An in-depth <it>in silico </it>analysis of the G72/G30 locus was performed in order to try and identify motifs or regulatory elements that provide insight to G72 mRNA expression and transcript stability.</p> <p>Results</p> <p>Despite using highly sensitive techniques, we failed to identify significant levels of G72 mRNA in a variety of human tissues (e.g. adult brain, amygdala, caudate nucleus, fetal brain, spinal cord and testis) human cell lines or schizophrenia/control post mortem BA10 samples. Furthermore, using western blotting in combination with sensitive detection methods, we were also unable to detect G72 protein in a number of human brain regions (including cerebellum and amygdala), spinal cord or testis. A detailed <it>in silico </it>analysis provides several lines of evidence that support the apparent low or absent expression of G72.</p> <p>Conclusion</p> <p>Our results suggest that native G72 protein is not normally present in the tissues that we analysed in this study. We also conclude that the lack of demonstrable G72 expression in relevant brain regions does not support a role for G72 in modulation of DAO activity and the pathology of schizophrenia via a DAO-mediated mechanism. <it>In silico </it>analysis suggests that G72 is not robustly expressed and that the transcript is potentially labile. Further studies are required to understand the significance of the G72/30 locus to schizophrenia.</p

    A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Intrinsic disorder (i.e., lack of a unique 3-D structure) is a common phenomenon, and many biologically active proteins are disordered as a whole, or contain long disordered regions. These intrinsically disordered proteins/regions constitute a significant part of all proteomes, and their functional repertoire is complementary to functions of ordered proteins. In fact, intrinsic disorder represents an important driving force for many specific functions. An illustrative example of such disorder-centric functional class is RNA-binding proteins. In this study, we present the results of comprehensive bioinformatics analyses of the abundance and roles of intrinsic disorder in 3,411 ribosomal proteins from 32 species. We show that many ribosomal proteins are intrinsically disordered or hybrid proteins that contain ordered and disordered domains. Predicted globular domains of many ribosomal proteins contain noticeable regions of intrinsic disorder. We also show that disorder in ribosomal proteins has different characteristics compared to other proteins that interact with RNA and DNA including overall abundance, evolutionary conservation, and involvement in protein–protein interactions. Furthermore, intrinsic disorder is not only abundant in the ribosomal proteins, but we demonstrate that it is absolutely necessary for their various functions

    Partial duplication of the APBA2 gene in chromosome 15q13 corresponds to duplicon structures.

    Get PDF
    BackgroundChromosomal abnormalities affecting human chromosome 15q11-q13 underlie multiple genomic disorders caused by deletion, duplication and triplication of intervals in this region. These events are mediated by highly homologous segments of DNA, or duplicons, that facilitate mispairing and unequal cross-over in meiosis. The gene encoding an amyloid precursor protein-binding protein (APBA2) was previously mapped to the distal portion of the interval commonly deleted in Prader-Willi and Angelman syndromes and duplicated in cases of autism.ResultsWe show that this gene actually maps to a more telomeric location and is partially duplicated within the broader region. Two highly homologous copies of an interval containing a large 5' exon and downstream sequence are located approximately 5 Mb distal to the intact locus. The duplicated copies, containing the first coding exon of APBA2, can be distinguished by single nucleotide sequence differences and are transcriptionally inactive. Adjacent to APBA2 maps a gene termed KIAA0574. The protein encoded by this gene is weakly homologous to a protein termed X123 that in turn maps adjacent to APBA1 on 9q21.12; APBA1 is highly homologous to APBA2 in the C-terminal region and is distinguished from APBA2 by the N-terminal region encoded by this duplicated exon.ConclusionThe duplication of APBA2 sequences in this region adds to a complex picture of different low copy repeats present across this region and elsewhere on the chromosome

    Unsupervised Integration of Multiple Protein Disorder Predictors: The Method and Evaluation on CASP7, CASP8 and CASP9 Data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies of intrinsically disordered proteins that lack a stable tertiary structure but still have important biological functions critically rely on computational methods that predict this property based on sequence information. Although a number of fairly successful models for prediction of protein disorder have been developed over the last decade, the quality of their predictions is limited by available cases of confirmed disorders.</p> <p>Results</p> <p>To more reliably estimate protein disorder from protein sequences, an iterative algorithm is proposed that integrates predictions of multiple disorder models without relying on any protein sequences with confirmed disorder annotation. The iterative method alternately provides the maximum a posterior (MAP) estimation of disorder prediction and the maximum-likelihood (ML) estimation of quality of multiple disorder predictors. Experiments on data used at CASP7, CASP8, and CASP9 have shown the effectiveness of the proposed algorithm.</p> <p>Conclusions</p> <p>The proposed algorithm can potentially be used to predict protein disorder and provide helpful suggestions on choosing suitable disorder predictors for unknown protein sequences.</p

    Synergistic Post-Transcriptional Regulation of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) by miR-101 and miR-494 Specific Binding

    Get PDF
    microRNAs (miRNAs) are a class of regulatory small non-coding molecules that control gene expression at post-transcriptional level. Deregulation of miRNA functions affects a variety of biological processes also involved in the etiology of several human mendelian and complex diseases. Recently, aberrant miRNA expression has been observed in Cystic Fibrosis (CF), an autosomal-recessive genetic disorder caused by mutations in the CFTR gene, in which a genotype-phenotype correlation is not always found. In order to determine miRNA role in CFTR post-transcriptional regulation, we searched for miR-responsive elements in the CFTR 3′-UTR. In silico analysis, performed using different computational on-line programs, identified some putative miRNAs. Both miR-101 and miR-494 synthetic mimics significantly inhibited the expression of a reporter construct containing the 3′-UTR of CFTR in luciferase assays. Interestingly, miR-101/miR-494 combination was able to markedly suppress CFTR activity by approximately 80% (p<0.001). This is one of the first in vitro studies implicating microRNAs as negative regulators of the CFTR gene expression. miRNA aberrant expression and function might explain the wide phenotypic variability observed among CF patients

    In silico analysis of regulatory and structural motifs of the ovine HSP90AA1 gene

    Get PDF
    Gene promoters are essential regions of DNA where the transcriptional molecular machinery to produce RNA molecules is recruited. In this process, DNA epigenetic modifications can acquire a fundamental role in the regulation of gene expression. Recently, in a previous work of our group, functional features and DNA methylation involved in the ovine HSP90AA1 gene expression regulation have been observed.Publishe
    corecore