195 research outputs found

    In-shoe plantar prressure measurement and analysis system based on fabric pressure sensing array

    Get PDF
    Author name used in this publication: David Dagan Feng2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A Review of Wearable Sensor Systems to Monitor Plantar Loading in the Assessment of Diabetic Foot Ulcers

    Get PDF
    Diabetes is highly prevalent throughout the world and imposes a high economic cost on countries at all income levels. Foot ulceration is one devastating consequence of diabetes, which can lead to amputation and mortality. Clinical assessment of diabetic foot ulcer (DFU) is currently subjective and limited, impeding effective diagnosis, treatment and prevention. Studies have shown that pressure and shear stress at the plantar surface of the foot plays an important role in the development of DFUs. Quantification of these could provide an improved means of assessment of the risk of developing DFUs. However, commercially-available sensing technology can only measure plantar pressures, neglecting shear stresses and thus limiting their clinical utility. Research into new sensor systems which can measure both plantar pressure and shear stresses are thus critical. Our aim in this paper is to provide the reader with an overview of recent advances in plantar pressure and stress sensing and offer insights into future needs in this critical area of healthcare. Firstly, we use current clinical understanding as the basis to define requirements for wearable sensor systems capable of assessing DFU. Secondly, we review the fundamental sensing technologies employed in this field and investigate the capabilities of the resultant wearable systems, including both commercial and research-grade equipment. Finally, we discuss research trends, ongoing challenges and future opportunities for improved sensing technologies to monitor plantar loading in the diabetic foot

    Development of E-Skin Sensors and Their Applications

    Get PDF
    This is a poster presentation. The poster will present the students\u27 research results on E-skin sensor development and application

    Textile-based wearable sensors for assisting sports performance

    Get PDF
    There is a need for wearable sensors to assess physiological signals and body kinematics during exercise. Such sensors need to be straightforward to use, and ideally the complete system integrated fully within a garment. This would allow wearers to monitor their progress as they undergo an exercise training programme without the need to attach external devices. This takes physiological monitoring into a more natural setting. By developing textile sensors the intelligence is integrated into a sports garment in an innocuous manner. A number of textile based sensors are presented here that have been integrated into garments for various sports applications

    Research progress of wearable plantar pressure monitoring system

    Get PDF
    In order to rapidly promote the application of wearable plantar pressure monitoring system, the physiological structure of human foot, the source of plantar pressure and exercise step frequency are introduced. Based on the current research status of wearable plantar pressure monitoring systems, the fabrication materials and response principles of the fabric sensor-based integrated pressure monitoring socks are explored, the principle of selecting the features of the wearable plantar pressure monitoring system and its application in the field of the pressure monitoring system is explained. The principle of selecting the features of wearable plantar pressure monitoring system and its application in fall detection, foot disease diagnosis, and plantar pressure database are explained. Finally, we discussed the problems in the industrialization of wearable plantar pressure monitoring system at this stage. The problems of poor material performance and short wireless transmission distance in the industrialization of wearable plantar pressure monitoring systems are discussed, and a better integrated system based on biomechanics, textile materials and electronic communication is proposed. A better application prospect based on the cross-fusion integration of biomechanics, textile materials and electronic communication is proposed

    Commercially available pressure sensors for sport and health applications: A comparative review

    Get PDF
    Pressure measurement systems have numerous applications in healthcare and sport. The purpose of this review is to: (a) describe the brief history of the development of pressure sensors for clinical and sport applications, (b) discuss the design requirements for pressure measurement systems for different applications, (c) critique the suitability, reliability, and validity of commercial pressure measurement systems, and (d) suggest future directions for the development of pressure measurements systems in this area. Commercial pressure measurement systems generally use capacitive or resistive sensors, and typically capacitive sensors have been reported to be more valid and reliable than resistive sensors for prolonged use. It is important to acknowledge, however, that the selection of sensors is contingent upon the specific application requirements. Recent improvements in sensor and wireless technology and computational power have resulted in systems that have higher sensor density and sampling frequency with improved usability – thinner, lighter platforms, some of which are wireless, and reduced the obtrusiveness of in-shoe systems due to wireless data transmission and smaller data-logger and control units. Future developments of pressure sensors should focus on the design of systems that can measure or accurately predict shear stresses in conjunction with pressure, as it is thought the combination of both contributes to the development of pressure ulcers and diabetic plantar ulcers. The focus for the development of in-shoe pressure measurement systems is to minimise any potential interference to the patient or athlete, and to reduce power consumption of the wireless systems to improve the battery life, so these systems can be used to monitor daily activity. A potential solution to reduce the obtrusiveness of in-shoe systems include thin flexible pressure sensors which can be incorporated into socks. Although some experimental systems are available further work is needed to improve their validity and reliability

    Pressure Mapping Mat for Tele-Home Care Applications

    Get PDF
    In this paper we present the development of a mat-like pressure mapping system based on a single layer textile sensor and intended to be used in home environments for monitoring the physical condition of persons with limited mobility. The sensor is fabricated by embroidering silver-coated yarns on a light cotton fabric and creating pressure-sensitive resistive elements by stamping the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) at the crossing points of conductive stitches. A battery-operated mat prototype was developed and includes the scanning circuitry and a wireless communication module. A functional description of the system is presented together with a preliminary experimental evaluation of the mat prototype in the extraction of plantar pressure parameters

    Master of Science

    Get PDF
    thesisAbnormal gait caused by stroke or other pathological reasons can greatly impact the life of an individual. Being able to measure and analyze that gait is often critical for rehabilitation. Motion analysis labs and many current methods of gait analysis are expensive and inaccessible to most individuals. The low cost, wearable, and wireless insole-based gait analysis system in this study provides kinetic measurements of gait by using low cost force sensitive resistors. This thesis describes the design and fabrication of two insoles and their evaluation with 10 control subjects and eight hemiplegic stroke subjects. The first insole used 32 force sensitive resistors and was used to determine the ideal locations of 12 sensors in the second insole. Linear regression was used on training data for each subject testing the second insole to determine ground reaction force, ankle dorsiflexion / plantarflexion moment, knee flexion / extension moment, and knee abduction / adduction moment. Comparison with data collected simultaneously from a clinical motion analysis laboratory demonstrated that the insole results for ground reaction force and ankle moment were highly correlated (all > 0.95) for all subjects, while the two knee moments were less strongly correlated (generally > 0.80). This provides a means of cost effective and efficient healthcare delivery of mobile gait analysis that can be used anywhere from large clinics to an individual's home. The two insoles also provide the means for further testing of force sensitive resistors in different applications
    corecore