21,756 research outputs found

    Combining Radon transform and Electrical Capacitance Tomography for a 2d+12d+1 imaging device

    Full text link
    This paper describes a coplanar non invasive non destructive capacitive imaging device. We first introduce a mathematical model for its output, and discuss some of its theoretical capabilities. We show that the data obtained from this device can be interpreted as a weighted Radon transform of the electrical permittivity of the measured object near its surface. Image reconstructions from experimental data provide good surface resolution as well as short depth imaging, making the apparatus a 2d+12d+1 imager. The quality of the images leads us to expect that excellent results can be delivered by \emph{ad-hoc} optimized inversion formulas. There are also interesting, yet unexplored, theoretical questions on imaging that this sensor will allow to test

    Non-linear carbon dioxide determination using infrared gas sensors and neural networks with Bayesian regularization

    Get PDF
    Carbon dioxide gas concentration determination using infrared gas sensors combined with Bayesian regularizing neural networks is presented in this work. Infrared sensor with a measuring range of 0~5% was used to measure carbon dioxide gas concentration within the range 0~15000 ppm. Neural networks were employed to fulfill the nonlinear output of the sensor. The Bayesian strategy was used to regularize the training of the back propagation neural network with a Levenberg-Marquardt (LM) algorithm. By Bayesian regularization (BR), the design of the network was adaptively achieved according to the complexity of the application. Levenberg-Marquardt algorithm under Bayesian regularization has better generalization capability, and is more stable than the classical method. The results showed that the Bayesian regulating neural network was a powerful tool for dealing with the infrared gas sensor which has a large non-linear measuring range and provide precise determination of carbon dioxide gas concentration. In this example, the optimal architecture of the network was one neuron in the input and output layer and two neurons in the hidden layer. The network model gave a relationship coefficient of 0.9996 between targets and outputs. The prediction recoveries were within 99.9~100.0%

    Experimental investigation of open-ended microwave oven assisted encapsulation process

    Get PDF
    An open ended microwave oven is presented with improved uniform heating, heating rates and power conversion efficiency. This next generation oven produces more uniform EM fields in the evanescent region forming part of the heating area of the oven. These fields are vital for the rapid and uniform heating of various electromagnetically lossy materials. A fibre optic temperature sensor and an IR pyrometer are used to measure in situ and in real-time the temperature of the curing materials. An automatic computer controlled closed feedback loop measures the temperature in the curing material and drives the microwave components to obtain predetermined curing temperature cycles for efficient curing. Uniform curing of the lossy encapsulants is achieved with this oven with typical cure cycle of 270 seconds with a ramp rate of 1oC/s and a hold period of 2 minutes. Differential scanning calorimeter based measurement for the pulsed microwave based curing of the polymer dielectric indicates a ~ 100% degree of cure

    A Model of Operant Conditioning for Adaptive Obstacle Avoidance

    Full text link
    We have recently introduced a self-organizing adaptive neural controller that learns to control movements of a wheeled mobile robot toward stationary or moving targets, even when the robot's kinematics arc unknown, or when they change unexpectedly during operation. The model has been shown to outperform other traditional controllers, especially in noisy environments. This article describes a neural network module for obstacle avoidance that complements our previous work. The obstacle avoidance module is based on a model of classical and operant conditioning first proposed by Grossberg ( 1971). This module learns the patterns of ultrasonic sensor activation that predict collisions as the robot navigates in an unknown cluttered environment. Along with our original low-level controller, this work illustrates the potential of applying biologically inspired neural networks to the areas of adaptive robotics and control.Office of Naval Research (N00014-95-1-0409, Young Investigator Award
    corecore