54 research outputs found

    EMB: Efficient Multimedia Broadcast in Multi-tier Mobile Networks

    Get PDF
    Multimedia broadcast and multicast services (MBMS) in mobile networks has been widely addressed, however an investigation of such a technology in emerging, multi-tier, scenarios is still lacking. Notably, user clustering and resource allocation are extremely challenging in multi-tier networks, and imperative to maximize system capacity and improve quality of user-experience (QoE) in MBMS. Thus, in this paper we propose a clustering and resource allocation approach, named EMB, which specifically addresses heterogeneous networks and accounts for the fact that multimedia content is adaptively encoded into scalable layers depending on the QoE requirements and channel conditions of the heterogeneous users. Importantly, we prove that our clustering algorithm yields Pareto efficient broadcasting areas, multimedia encoding parameters, and re- source allocation, in a way that is also fair to the users. Fur- thermore, numerical results obtained under realistic conditions and using real-world video content, show that the proposed EMB results in lower churn count (i.e., higher number of served users), higher throughput, and increased QoE, while using fewer network resources

    Optical network technologies for future digital cinema

    Get PDF
    Digital technology has transformed the information flow and support infrastructure for numerous application domains, such as cellular communications. Cinematography, traditionally, a film based medium, has embraced digital technology leading to innovative transformations in its work flow. Digital cinema supports transmission of high resolution content enabled by the latest advancements in optical communications and video compression. In this paper we provide a survey of the optical network technologies for supporting this bandwidth intensive traffic class. We also highlight the significance and benefits of the state of the art in optical technologies that support the digital cinema work flow

    Fast Depth and Inter Mode Prediction for Quality Scalable High Efficiency Video Coding

    Get PDF
    International audienceThe scalable high efficiency video coding (SHVC) is an extension of high efficiency video coding (HEVC), which introduces multiple layers and inter-layer prediction, thus significantly increases the coding complexity on top of the already complicated HEVC encoder. In inter prediction for quality SHVC, in order to determine the best possible mode at each depth level, a coding tree unit can be recursively split into four depth levels, including merge mode, inter2Nx2N, inter2NxN, interNx2N, interNxN, in-ter2NxnU, inter2NxnD, internLx2N and internRx2N, intra modes and inter-layer reference (ILR) mode. This can obtain the highest coding efficiency, but also result in very high coding complexity. Therefore, it is crucial to improve coding speed while maintaining coding efficiency. In this research, we have proposed a new depth level and inter mode prediction algorithm for quality SHVC. First, the depth level candidates are predicted based on inter-layer correlation, spatial correlation and its correlation degree. Second, for a given depth candidate, we divide mode prediction into square and non-square mode predictions respectively. Third, in the square mode prediction, ILR and merge modes are predicted according to depth correlation, and early terminated whether residual distribution follows a Gaussian distribution. Moreover, ILR mode, merge mode and inter2Nx2N are early terminated based on significant differences in Rate Distortion (RD) costs. Fourth, if the early termination condition cannot be satisfied, non-square modes are further predicted based on significant differences in expected values of residual coefficients. Finally, inter-layer and spatial correlations are combined with residual distribution to examine whether to early terminate depth selection. Experimental results have demonstrated that, on average, the proposed algorithm can achieve a time saving of 71.14%, with a bit rate increase of 1.27%

    5G-QoE:QoE Modelling for Ultra-HD Video Streaming in 5G Networks

    Get PDF
    Traffic on future fifth-generation (5G) mobile networks is predicted to be dominated by challenging video applications such as mobile broadcasting, remote surgery and augmented reality, demanding real-time, and ultra-high quality delivery. Two of the main expectations of 5G networks are that they will be able to handle ultra-high-definition (UHD) video streaming and that they will deliver services that meet the requirements of the end user's perceived quality by adopting quality of experience (QoE) aware network management approaches. This paper proposes a 5G-QoE framework to address the QoE modeling for UHD video flows in 5G networks. Particularly, it focuses on providing a QoE prediction model that is both sufficiently accurate and of low enough complexity to be employed as a continuous real-time indicator of the 'health' of video application flows at the scale required in future 5G networks. The model has been developed and implemented as part of the EU 5G PPP SELFNET autonomic management framework, where it provides a primary indicator of the likely perceptual quality of UHD video application flows traversing a realistic multi-tenanted 5G mobile edge network testbed. The proposed 5G-QoE framework has been implemented in the 5G testbed, and the high accuracy of QoE prediction has been validated through comparing the predicted QoE values with not only subjective testing results but also empirical measurements in the testbed. As such, 5G-QoE would enable a holistic video flow self-optimisation system employing the cutting-edge Scalable H.265 video encoding to transmit UHD video applications in a QoE-aware manner

    SLEPX: An Efficient Lightweight Cipher for Visual Protection of Scalable HEVC Extension

    Get PDF
    This paper proposes a lightweight cipher scheme aimed at the scalable extension of the High Efficiency Video Coding (HEVC) codec, referred to as the Scalable HEVC (SHVC) standard. This stream cipher, Symmetric Cipher for Lightweight Encryption based on Permutation and EXlusive OR (SLEPX), applies Selective Encryption (SE) over suitable coding syntax elements in the SHVC layers. This is achieved minimal computational complexity and delay. The algorithm also conserves most SHVC functionalities, i.e. preservation of bit-length, decoder format-compliance, and error resilience. For comparative analysis, results were taken and compared with other state-of-art ciphers i.e. Exclusive-OR (XOR) and the Advanced Encryption Standard (AES). The performance of SLEPX is also compared with existing video SE solutions to confirm the efficiency of the adopted scheme. The experimental results demonstrate that SLEPX is as secure as AES in terms of visual protection, while computationally efficient comparable with a basic XOR cipher. Visual quality assessment, security analysis and extensive cryptanalysis (based on numerical values of selected binstrings) also showed the effectiveness of SLEPX’s visual protection scheme for SHVC compared to previously-employed cryptographic technique

    Implementation of 4kUHD HEVC-content transmission

    Get PDF
    The Internet of things (IoT) has received a great deal of attention in recent years, and is still being approached with a wide range of views. At the same time, video data now accounts for over half of the internet traffic. With the current availability of beyond high definition, it is worth understanding the performance effects, especially for real-time applications. High Efficiency Video Coding (HEVC) aims to provide reduction in bandwidth utilisation while maintaining perceived video quality in comparison with its predecessor codecs. Its adoption aims to provide for areas such as television broadcast, multimedia streaming/storage, and mobile communications with significant improvements. Although there have been attempts at HEVC streaming, the literature/implementations offered do not take into consideration changes in the HEVC specifications. Beyond this point, it seems little research exists on real-time HEVC coded content live streaming. Our contribution fills this current gap in enabling compliant and real-time networked HEVC visual applications. This is done implementing a technique for real-time HEVC encapsulation in MPEG-2 Transmission Stream (MPEG-2 TS) and HTTP Live Streaming (HLS), thereby removing the need for multi-platform clients to receive and decode HEVC streams. It is taken further by evaluating the transmission of 4k UHDTV HEVC-coded content in a typical wireless environment using both computers and mobile devices, while considering well-known factors such as obstruction, interference and other unseen factors that affect the network performance and video quality. Our results suggest that 4kUHD can be streamed at 13.5 Mb/s, and can be delivered to multiple devices without loss in perceived quality

    Reception performance studies for the evaluation and improvement of the new generation terrestrial television systems

    Get PDF
    270 p.La industria de la TV ha experimentado grandes cambios en las últimas décadas. Las expectativas cada vez mayores de los espectadores y la reducción del espectro disponible para los servicios de TV han provocado la necesidad de sistemas más robustos de Televisión Digital Terrestre (TDT).El primer intento de cumplir estos requisitos es el estándar europeo DVB-T2 (2009). La publicación de un nuevo estándar significa el inicio de un proceso de evaluación del rendimiento del mismo mediante, por ejemplo, estudios de cobertura u obtención de valores de umbral de relación señal / ruido (SNR). Al inicio de esta tesis, este proceso estaba casi terminado para recepción fija y móvil. Sin embargo, la recepción en interiores no se había estudiado en detalle. Por esta razón, esta tesis completa la evaluación de DVB-T2 en interiores y define una nueva metodología de evaluación optimizada para este escenario.A pesar de que DVB-T2 emplea tecnologías muy avanzadas, el sistema se definió hace casi diez años y desde entonces han aparecido nuevas técnicas avanzadas, como por ejemplo nuevos códigos de corrección de errores o la nueva técnica de multiplexación por división en capas (LDM). Estas nuevas técnicas tampoco han sido evaluadas en entornos de interior, por lo que esta tesis incluye el análisis de las mismas evaluando su idoneidad para mejorar el rendimiento de DVB-T2. Además, se ha comprobado que los algoritmos tradicionales de los receptores TDT no están optimizados para los nuevos escenarios en los que se consideran las señales multicapa y recepción móvil. Por esta razón, se han propuesto nuevos algoritmos para mejorar la recepción en este tipo de situaciones.El último intento de hacer frente a los altos requisitos actuales de TDT es el estándar americano ATSC 3.0 (2016). Al igual que con DVB-T2, se necesita proceso completo de evaluación del sistema. Por ello, en esta tesis se han realizado simulaciones y pruebas de laboratorio para completar el estudio de rendimiento de ATSC 3.0 en diferentes escenarios
    corecore