671 research outputs found

    Simulation Studies of Digital Filters for the Phase-II Upgrade of the Liquid-Argon Calorimeters of the ATLAS Detector at the High-Luminosity LHC

    Get PDF
    Am Large Hadron Collider und am ATLAS-Detektor werden umfangreiche Aufrüstungsarbeiten vorgenommen. Diese Arbeiten sind in mehrere Phasen gegliedert und umfassen unter Anderem Änderungen an der Ausleseelektronik der Flüssigargonkalorimeter; insbesondere ist es geplant, während der letzten Phase ihren Primärpfad vollständig auszutauschen. Die Elektronik besteht aus einem analogen und einem digitalen Teil: während ersterer die Signalpulse verstärkt und sie zur leichteren Abtastung verformt, führt letzterer einen Algorithmus zur Energierekonstruktion aus. Beide Teile müssen während der Aufrüstung verbessert werden, damit der Detektor interessante Kollisionsereignisse präzise rekonstruieren und uninteressante effizient verwerfen kann. In dieser Dissertation werden Simulationsstudien präsentiert, die sowohl die analoge als auch die digitale Auslese der Flüssigargonkalorimeter optimieren. Die Korrektheit der Simulation wird mithilfe von Kalibrationsdaten geprüft, die im sog. Run 2 des ATLAS-Detektors aufgenommen worden sind. Der Einfluss verschiedener Parameter der Signalverformung auf die Energieauflösung wird analysiert und die Nützlichkeit einer erhöhten Abtastrate von 80 MHz untersucht. Des Weiteren gibt diese Arbeit eine Übersicht über lineare und nichtlineare Energierekonstruktionsalgorithmen. Schließlich wird eine Auswahl von ihnen hinsichtlich ihrer Leistungsfähigkeit miteinander verglichen. Es wird gezeigt, dass ein Erhöhen der Ordnung des Optimalfilters, der gegenwärtig verwendete Algorithmus, die Energieauflösung um 2 bis 3 % verbessern kann, und zwar in allen Regionen des Detektors. Der Wiener Filter mit Vorwärtskorrektur, ein nichtlinearer Algorithmus, verbessert sie um bis zu 10 % in einigen Regionen, verschlechtert sie aber in anderen. Ein Zusammenhang dieses Verhaltens mit der Wahrscheinlichkeit fälschlich detektierter Kalorimetertreffer wird aufgezeigt und mögliche Lösungen werden diskutiert.:1 Introduction 2 An Overview of High-Energy Particle Physics 2.1 The Standard Model of Particle Physics 2.2 Verification of the Standard Model 2.3 Beyond the Standard Model 3 LHC, ATLAS, and the Liquid-Argon Calorimeters 3.1 The Large Hadron Collider 3.2 The ATLAS Detector 3.3 The ATLAS Liquid-Argon Calorimeters 4 Upgrades to the ATLAS Liquid-Argon Calorimeters 4.1 Physics Goals 4.2 Phase-I Upgrade 4.3 Phase-II Upgrade 5 Noise Suppression With Digital Filters 5.1 Terminology 5.2 Digital Filters 5.3 Wiener Filter 5.4 Matched Wiener Filter 5.5 Matched Wiener Filter Without Bias 5.6 Timing Reconstruction, Optimal Filtering, and Selection Criteria 5.7 Forward Correction 5.8 Sparse Signal Restoration 5.9 Artificial Neural Networks 6 Simulation of the ATLAS Liquid-Argon Calorimeter Readout Electronics 6.1 AREUS 6.2 Hit Generation and Sampling 6.3 Pulse Shapes 6.4 Thermal Noise 6.5 Quantization 6.6 Digital Filters 6.7 Statistical Analysis 7 Results of the Readout Electronics Simulation Studies 7.1 Statistical Treatment 7.2 Simulation Verification Using Run-2 Data 7.3 Dependence of the Noise on the Shaping Time 7.4 The Analog Readout Electronics and the ADC 7.5 The Optimal Filter (OF) 7.6 The Wiener Filter 7.7 The Wiener Filter with Forward Correction (WFFC) 7.8 Final Comparison and Conclusions 8 Conclusions and Outlook AppendicesThe Large Hadron Collider and the ATLAS detector are undergoing a comprehensive upgrade split into multiple phases. This effort also affects the liquid-argon calorimeters, whose main readout electronics will be replaced completely during the final phase. The electronics consist of an analog and a digital portion: the former amplifies the signal and shapes it to facilitate sampling, the latter executes an energy reconstruction algorithm. Both must be improved during the upgrade so that the detector may accurately reconstruct interesting collision events and efficiently suppress uninteresting ones. In this thesis, simulation studies are presented that optimize both the analog and the digital readout of the liquid-argon calorimeters. The simulation is verified using calibration data that has been measured during Run 2 of the ATLAS detector. The influence of several parameters of the analog shaping stage on the energy resolution is analyzed and the utility of an increased signal sampling rate of 80 MHz is investigated. Furthermore, a number of linear and non-linear energy reconstruction algorithms is reviewed and the performance of a selection of them is compared. It is demonstrated that increasing the order of the Optimal Filter, the algorithm currently in use, improves energy resolution by 2 to 3 % in all detector regions. The Wiener filter with forward correction, a non-linear algorithm, gives an improvement of up to 10 % in some regions, but degrades the resolution in others. A link between this behavior and the probability of falsely detected calorimeter hits is shown and possible solutions are discussed.:1 Introduction 2 An Overview of High-Energy Particle Physics 2.1 The Standard Model of Particle Physics 2.2 Verification of the Standard Model 2.3 Beyond the Standard Model 3 LHC, ATLAS, and the Liquid-Argon Calorimeters 3.1 The Large Hadron Collider 3.2 The ATLAS Detector 3.3 The ATLAS Liquid-Argon Calorimeters 4 Upgrades to the ATLAS Liquid-Argon Calorimeters 4.1 Physics Goals 4.2 Phase-I Upgrade 4.3 Phase-II Upgrade 5 Noise Suppression With Digital Filters 5.1 Terminology 5.2 Digital Filters 5.3 Wiener Filter 5.4 Matched Wiener Filter 5.5 Matched Wiener Filter Without Bias 5.6 Timing Reconstruction, Optimal Filtering, and Selection Criteria 5.7 Forward Correction 5.8 Sparse Signal Restoration 5.9 Artificial Neural Networks 6 Simulation of the ATLAS Liquid-Argon Calorimeter Readout Electronics 6.1 AREUS 6.2 Hit Generation and Sampling 6.3 Pulse Shapes 6.4 Thermal Noise 6.5 Quantization 6.6 Digital Filters 6.7 Statistical Analysis 7 Results of the Readout Electronics Simulation Studies 7.1 Statistical Treatment 7.2 Simulation Verification Using Run-2 Data 7.3 Dependence of the Noise on the Shaping Time 7.4 The Analog Readout Electronics and the ADC 7.5 The Optimal Filter (OF) 7.6 The Wiener Filter 7.7 The Wiener Filter with Forward Correction (WFFC) 7.8 Final Comparison and Conclusions 8 Conclusions and Outlook Appendice

    Analysis and Design of Energy Efficient Frequency Synthesizers for Wireless Integrated Systems

    Full text link
    Advances in ultra-low power (ULP) circuit technologies are expanding the IoT applications in our daily life. However, wireless connectivity, small form factor and long lifetime are still the key constraints for many envisioned wearable, implantable and maintenance-free monitoring systems to be practically deployed at a large scale. The frequency synthesizer is one of the most power hungry and complicated blocks that not only constraints RF performance but also offers subtle scalability with power as well. Furthermore, the only indispensable off-chip component, the crystal oscillator, is also associated with the frequency synthesizer as a reference. This thesis addresses the above issues by analyzing how phase noise of the LO affect the frequency modulated wireless system in different aspects and how different noise sources in the PLL affect the performance. Several chip prototypes have been demonstrated including: 1) An ULP FSK transmitter with SAR assisted FLL; 2) A ring oscillator based all-digital BLE transmitter utilizing a quarter RF frequency LO and 4X frequency multiplier; and 3) An XO-less BLE transmitter with an RF reference recovery receiver. The first 2 designs deal with noise sources in the PLL loop for ultimate power and cost reduction, while the third design deals with the reference noise outside the PLL and explores a way to replace the XO in ULP wireless edge nodes. And at last, a comprehensive PN theory is proposed as the design guideline.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153420/1/chenxing_1.pd

    Bio-inspired VLSI Systems: from Synapse to Behavior

    Get PDF
    We investigate VLSI systems using biological computational principles. The elegance of biological systems throughout the structure levels provides possible solutions to many engineering challenges. Specifically, we investigate neural systems at the synaptic level and at the sensorimotor integration level, which inspire our similar implementations in silicon. For both VLSI systems, we use floating gate MOSFETs in standard CMOS processes as nonvolatile storage elements, which enable adaptation and programmability. We propose a compact silicon stochastic synapse and methods to incorporate activity-dependent dynamics, which emulate a biological stochastic synapse. We implement and demonstrate the first silicon stochastic synapse with short-term depression by modulating the influence of noise on the circuit. The circuit exhibits true randomness and similar behavior of rate normalization and information redundancy reduction as its biological counterparts. The circuit behavior also agrees well with the theory and simulation of a circuit model based on a subtractive single release model. To understand the stochastic behavior of the silicon stochastic synapse and the stochastic operation of conventional circuits due to semiconductor technology scaling, we develop the stochastic modeling of circuits and transient analysis from the numerical solution of the stochastic model. The analytical solution of steady state distribution could be obtained from first principles. Small signal stochastic models show the interaction between noise and circuit dynamics, elucidating the effect of device parameters and biases on the stochastic behavior. We investigate optic flow wide field integration based navigation inspired from the fly in simulation, theory, and VLSI design. We generalize the framework to limited view angles. We design and test an integrated motion image sensor with on-chip optic flow estimation, adaptation, and programmable spatial filtering to directly interface with actuators for autonomous navigation. This is the first reported image sensor that uses the spatial motion pattern to extract motion parameters enabled by the mismatch compensation and programmable filters. The sensor is integrated with a ground vehicle and navigation through simple tunnel environments is demonstrated. It provides light weight and low power integrated approach to autonomous navigation of micro air vehicles

    Requirements Study for System Implementation of an Atmospheric Laser Propagation Experiment Program, Volume II

    Get PDF
    Program planning, ground support and airborne equipment for laser space communication syste

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    Model Based Optimal Longitudinal Vehicle Control

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2016Otomotiv sektöründeki zorlu rekabet ortamı göz önüne alındığında, otomotiv üreticileri müşterilerine daha çekici ve fonksiyonel araçlar sunabilmak için birbirleri ile sürekli bir yarış halindelerdir. Maliyet, emisyon, yakıt ekonomisi, gürültü ve titreşim, dayanıklılık, performans ve araç sürüş özellikleri gibi kriterlerde yapılan iyileştirmeler sayesinde üreticiler rakip firmaların araçlarına göre daha avantajlı bir yere gelmeyi hedeflerler. Bu özelliklerin her biri müşterilerin kullandığı / kullacağı araç için olumlu bir algı oluşturulmasında önemli katkısı vardır. Bilişim ve elektronik sektöründeki araştırma ve gelişmeler faaliyetleri sonucunda elde edilen yeni teknolojiler ışığında otomobil mimarisindeki elektro-mekanik istemlerin kullanımı oldukça artmıştır. Buna ek olarak malzeme bilimi ve üretim teknolojisinde gelişmeler ışığında dizel yakıtlı içten yanmalı motorlarun tork ve güç eğrileri 20 yıl önce üretilen motorlardaki tork ve güç seviyelerine göre neredeyse 2 katına çıkmıştır. Ayrıca araçların ivmelenme manevralarındaki hızlanma tepki seviyeleri de özellikle hava yolu kontrolündeki yenilik ve gelişmeler doğrultusunda oldukça artmıştır ve araçları çok daha çevik ve sürücülerin gaz pedalı hareketine bağlı isteklerine çok daha fazla duyarlı hale getirmiştir. Motor tork ve güç kapasitelerindeki gelişmeler doğrultusunda araçların gaz pedalı tepkileri ciddi oranda değişmiş ve iyi bir araç sürüş özellikleri kalibrasyonuna ihtiyaç doğmuştur. Tüm gelişmelerin neticesinde araç sürüş özellikleri, müşteri memnuiyeti kriterleri arasında önemli bir paya sahip olmuştur. Bu tez çalışması araç sürüş üzellikleri simulasyon programları ve model bazlı kontrol algoritmaları kullanarak iyileştirmeyi amaçlamaktadır. Aracın güç ünitesi olan motorlardan tekerlekler vasıtasıyla yola olan tork ve kuvvet iletimi son derece karmaşık bir yapıya sahiptir ve araç sürüş özellikleri düşünüldüğünde dikkatli bir şekilde ele alınmalıdır. Aracın gaz pedalı hareketine olan tepkisi gecikme içermemeli, yeteri kadar hızlı ve seri olmalı aynı zamanda vurma, sarsıntı, salınım ve yığılma gibi hata modları içermemelidir. Bununla birlikte araç aktarma organları bileşenlerindeki doğrusal olmayan sistemler düşünüldüğünde, yukarıda bahsedilen araç sürüş özellikleri beklentilerini karşılamak son derece zorlu bir hal almaktadır. Eski araçlardaki gaz pedalı ve kelebeği arasındaki bağlantı teli vasıtasıyla sağlanan mekanik araç doğrusal ekseni kontrolünden farklı olarak, günümüzün modern araçları elektromekanik sistemler ile donatılmıştır. Motor kontrol üniteleri araç dorusal ekseni hareketini regülatif ve müşteri beklentileri ile uyumlu şekilde sağlamak için onlarca sensör sinyalini algıladıkdan sonra milisaniyeler içersinde işleyerek, motor ve araç aktüatörlerinin kontrolü için uygun sinyalleri üretirler. Araç sürüş özellikleri algoritmları düşünüldüğünde otomobil üreticileri gaz pedalı deplasmanına bağlı sürücü tork isteğini yumuşatan veya filtreleyen algorithmalar kullanırlar. Bu algoritmalar genellikle harita bazlıdırlar ve ana misyonları özellikle araç aktarma organlarındaki dişli mekanizmalarındaki boşluklardan geçerken geçerken tork artış ve azalma hızlarını limitleyerek araç sürüş özelliklerini iyileştirmektir. Sistem herhangi bir kapalı döngü içermediği için, bu algoritmalar subjectif kalibrasyon yöntemleri olarak tanımlanabilirler ve sistemin doğru çalışması, bu haritaları kalibre edem kalibrasyon mühendisinin hislerine ve yeteneğine bağlıdır. Ayrıca bu haritalardaki araç hızı, pedal pozisyonu ve vitese bağlı kombinasyonlar içerirler ve tüm olası koşulları içeren bir kalibrasyon yapılması oldukça zaman almaktadır. Mevcut kalibrasyon yapısının yukarıda bahsedilen kusurları göz önüne alındığında; araç sürüş özelliklerinin iyileştirilmesi için performans ve konfor gibi birbirleriye çelişen isteklerin optimizasyonunu barındıran gelişmiş tork kontrolü, otomobil üreticileri ve akademik dünyada son derece ilgi çeken bir konu haline gelmiştir. Araç doğrusal ekseni hareket kontrolü algoritmalarının başarılı bir şekilde kullanılabilmesi için motorun anlık olarak ürettiği torkun bilinmesi oldukça önemlidir. Günümüz araçlarının yanma kontrolü incelendiğinde, mevcut yapının harita bazlı olduğu görülür ve bu yapıda üretilen torkun doğrulaması yapılmamaktadır. Bu haritalar motor test dinamometrelerinde normal hava koşulları için (25 derece sıcaklık ve deniz seviyesi irtifa) doldurulurlar. Genellikle bu haritaların eksenleri motor hızı ve istenilen indike tork şeklinde olup, haritanın içeriğini ise istenilen yanma parametresinin belirtilen motor hızı ve indike torktaki değeri oluşturur. Bu yapı araçlarda kullanılırken bazı sıkıntılar yaratabilir. Motorlarda yanmayı oluşturan yakıt yolu parametreleri kontrolü çok daha hassas bir şekilde yapılırken (istenilen yakıt özellikleri: basınç, zamanlama ve miktar), gecici rejim manevraları düşünüldüğünde hava yolu parametreleri özellikle turbo şarj içeren dizel motor motorlarda istenilen değerden sapma gösterebilir. Bu durum “turbo gecikmesi” olarak adlandırılır ve üretilen torku ciddi şekilde etkiler. Aşırı sıcak yada soğuk ve yüksek irtifa koşulları düşünüldüğünde üretilen torktaki sapmalar çok daha fazla olur. Literature incelendiğinde araç eksenel doğrultusu için geliştirilen motor tork kontrol algoritmaları bakımından istenilen anlık torkun motor tarafından verildiği düşünülür. Fakat yukarıda belirtilen nedenlerden dolayı bu durum gerçekleşemez. Bu yüzden literaturde belirtilen araç doğrulsal ekseni için geliştirilen motor tork kontrolü algoritmalarında motor tork karakteristiği ya hiç düşünülmemiştir yada bazı temel gecikme ve filtrele fonksiyonları ile modellenmiştir. Tüm bu anlatılanlar düşünüldüğünde bu tez çalışmasının temelini oluşturan motor tork modeli içeren araç doğrusal ekseni kontrol algoritması literatürdeki diğer çalışmaşlarda ayrışır. Önerilen “Silindir için basınç öngörümlü motor tork kontrol modeli algoritması” araç sürüş özellikleri kontrol yapısı ile uyumlu bir şekilde çalışarak araç tepki karakterini iyileştirir. Bu çalışma kapsamında MATLAB/Similink modelle ortamında, 4 atalet kütlesi, 2 set yay ve sönüm elemanı ve lastik karakteristiği içeren, 4 serbbestlik dereceli bir aktarma organları modeli oluşturulmuştur. Sadece araç doğrusal ekseni araç dinamiğini içeren model validasyonu, gaz basma ve gazdan çekme gibi yük değişimi manevralarını içeren araç seviyesi tesler ile yürütülmüştür. Test ölçüm sonuçları ve model çıktıları karşılaştırıldığında geliştirilen aktarma organları modelinin araç doğrusal ekseni hızlanma profili için karşılaşılan hata modlarını da içerecek şekilde yansıttığı görülmüştür. Son olarak araç aktarma organları uygulaması düşünüldüğünde, araç sürüş özelliklerini iyileştirme için sürücü talebi doğrultusunda oluşan tork isteğini araç doğrulsal ekseni hareketinde oluşabilecek salınımları engelleyen model bazlı öngörümlü tork kontrol algoritması geliştirilmiştir. Bu algoritmada 4 serbestlik dereceli model, içerdiği doğrusal olmama durumu yüzünden kullanılamamıştır. Bu yüzden basitleştirilmiş 2 ve 3 serbestlik dereceli araç aktarma organları modelleri oluşturulmuştur. Yapılan çalışmalar doğrultusunda hem 2 hem de 3 serbestlik dereceli modellerin, model bazlı öngörümlü tork kontrol algoritmasını düzgün şekilde çalıştırabilmek için yeterli doğruluk ve çözünürlükde olduğu görülmüştür. Bu çalışmanın amacı kapalı devre bir araç sürüş özellikleri algoritması ortaya çıkarmak olduğu için ve geliştirilen algoritma teknik nedenler dolayısıyla araçta denenemediği için, 4 serbestlik dereceli motor aktarma organları modeli, 2 ve 3 serbestlik dereceli motor aktarma organları modelli içeren model bazlı öngörümlü tork kontrol algoritmalarını çalıştırmak üzere kullanılmıştır. Geliştirilen 2 ve 3 serbestlik dereceli modellerin araç sürüş özellikleri önemli derecede iyileştirdiği görülmüştür. Özellkile ivmelenme profilinin düzgünlüğü ve neden olusan sistem gecikmesi düşünüldüğünde 2 serbestlik dereceli aktarma organları modeli bazlı kontrol algoritmasnın daha iyi sonuç verdiği görülmüştür. Geliştirilen tork kontrol modelli aktarma organları bazlı araç salınımları ciddi oranda azaltsada, tamamen ortadan kaldırmadığı görülmüştür. Bu doğrultuda araç ivmelenme karakteristiğinden minimum seviyede ödün vererek, oluşan salınımları daha da azaltmak ve ivmelenme profilini daha düzgün hale getirmek için temel olarak motor ve araç hızı farkını elimine etme prensibine dayanan bir doğrulsal (P) kontrolcü, model bazlı öngürümlü tork kontrol algoritmasına eklenmiştir. Literatürde bu konuda yapılan çalışmalar incelendiğinde tüm araçtırmacıların model bazlı öngürümlü algoritmayı tek başına kullandıkları görükmektedir ve bu çalışmada önerilen doğrusal kontrolcü eklenmiş model bazlı öngörümlü tork kontrol algoritması bir yenilik olarak mevcut literatür içeriğine eklenmiştir.Considering the competitive environment in automotive industry, original equipment manufacturers (OEMs) in this industry are in a challenging competition with each other to offer their customers more attractive vehicles. Cost, emissions, fuel economy, noise vibration & harshness (NVH), durability, performance and driveability properties make a product able to distinguish from its competitors’ products. Each of these attributes has a major contribution of forming a perception of the customers’ choosiness. New technologies as a result of the research and developments activities in electronics resulted with complex electro-mechanical systems in automobiles. With the addition of recent developments in materials and manufacturing processes on top of it, especially in diesel fuelled internal combustion engines (ICE), torque and power delivery had almost doubled with respect to the conventional engines developed not more than two decades ago. Additionally as a result of latest developments at air path and gas exchange systems control, torque build up rate had significantly increased enabling the vehicles to be more agile and reactive to load change request manoeuvres. As a result of all these capability improvements, vehicle response characteristics to high torque and power capacity engines changed extremely altering the necessity of proper and robust driveability calibration requirements. Driveability properties of the vehicles had gained significant importance in terms of customer satisfaction. This dissertation focuses on improving vehicle driveability properties taking advantage of simulation tools and model based control. The overall profit of this thesis is providing improved driveability via using engine torque production and vehicle models and controllers at the same time. Torque transmission from the vehicle’s power unit to the road surface via tires is a complex structure which should be handled with extreme care considering the overall driveability performance of the vehicle. An agile throttle response of the vehicle is aimed without error modes like acceleration initial kick, bump, response delay, stumble or shuffle. However considering the nonlinearities resulting from the complex structures at the drivetrain of the vehicle, this requirement becomes significantly challenging. Despite mechanical control at longitudinal motion in conventional vehicles, modern vehicles are equipped with electromechanical systems. Thanks to technological developments in the automotive industry that current capability of the vehicles enables us to develop better platforms for improving driveability characteristics. Modern engine control units (ECUs) have the capability of processing thousands of signals in a less than tens of milliseconds and as a result regulate numerous actuators which results with displacement of the vehicle complying all regulative requirements and customer expectations. Acceleration throttle pedal input signal is recorded by electronic control unit, processed and finally used to control the parameters for the combustion systems. In terms of driveability control, automotive manufacturers’ engine control algorithms employ input shaping or simple filtering algorithms. These algorithms use look-up tables and main control strategy is to slew the pedal oriented torque request for the tip-in and tip-out manoeuvres in an open loop control methodology especially in backlash transition region of the driveline. Considering the fact that there is no close loop control and these features become subjective calibration methodologies and outcome becomes strongly dependant on calibrator’s capability and performance. Moreover filling look-up tables for all gear, engine speed and pedal position combinations requires significant amount of calibration development time. Taking into consideration all of these obstacles of the current driveability features, the subject of automated torque control for improved driveability is a state of the art research topic both within automotive manufacturers and academic researchers as it can be described as an optimization problem dealing with performance and comfort counter measures. Knowledge of the instantaneous produced torque by the engine is a key item with respect to satisfying above stated attributes in vehicle longitudinal motion control. Currently common approach for combustion management is the usage of look-up table based structures with the drawback of poor conformity of the produced torque. Look-up tables define air and fuel quantity setpoints in order to produce requested indicated torque without feedback of the produced torque. These look-up tables are filled at engine dynamometer test benches at normal ambient conditions. In general fuel and air quantity setpoint maps have the axes of engine speed and indicated torque and requested amount of desired variable is filled to the corresponding point of the look-up table. In real world driving conditions fuel quantity control is robust however especially with turbocharged systems; requested air quantities may deviate from the setpoint values especially when considering transient manoeuvres. This phenomenon is called “turbo/boost lag” and significantly affects the produced torque. The situation is much worse for non-standard conditions, extreme hot and cold and altitude. In the literature most of the proposed vehicle longitudinal motion control related engine torque control algorithms base on the fact that requested torque will be generated immediately from the diesel engine. However as explained above this is not the case in real life applications. Therefore engine characteristic is either not included or covered with a simple filtering algorithm in conventional vehicle longitudinal motion related engine torque control methodologies. Engine brake torque model combined driveability control algorithm proposed in this thesis is differentiated from the previous studies in the literature within this perspective. Proposed “In cylinder pressured based engine brake torque model algorithm” works in harmony with the driveability control structure and improves overall vehicle response characteristics. Within the scope of this study a 4 degree of freedom powertrain model consisting of 4 inertias, 2 set of spring and damper elements with tyre characteristics, is built in MATLAB/Simulink environment. Model validation considering longitudinal vehicle dynamics is performed with employing vehicle level tests using a tip-in followed by a tip-out acceleration pedal signal input load change manoeuvres. Comparison of simulation results and measured vehicle test data shows that proposed model is capable of capturing vehicle acceleration profile revealing unintended error states for the specified input signals. Considering the driveability control perspective, a Model Predictive Control (MPC) algorithm employed to manipulate the pedal map oriented torque demand signal in an automotive powertrain application in order attenuate the powertrain oscillations in longitudinal vehicle motion control. 4 mass model could not be employed at with the MPC algorithm due to very high level of nonlinearity. Therefore two simplified versions of 2 and 3 mass models have been developed. It has been verified that both 2 and 3 mass vehicle models are accurate enough to employ the MPC torque control algorithm. As the aim of this study is to develop a close loop driveability algorithm for real world applications, the 4 mass vehicle model is used as replacement environment for the subjected vehicle in order to employ 2 and 3 mass vehicle model based control algorithm. MPC algorithms via using both models showed good capability, however smoothness of the driving profile with the 2 mass vehicle model is slightly better than the 3 mass model. Moreover to further improve the powertrain oscillations without compromising from overall system response speed, an additional anti-shuffle control element, basically a P controller based on the speed difference of engine and vehicle speeds, has been implemented to the MPC control algorithm. Literature review about the engine torque control for improved driveability show that all the researcher use MPC alone. Proposed MPC with additional P controller is a new contribution to the literature in the subjected area of research.DoktoraPh.D

    Wake-up receiver based ultra-low-power WBAN

    Get PDF

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    Correlation transfer by layer 5 cortical neurons under recreated synaptic inputs in vitro

    Get PDF
    Correlated electrical activity in neurons is a prominent characteristic of cortical microcircuits. Despite a growing amount of evidence concerning both spike-count and subthreshold membrane potential pairwise correlations, little is known about how different types of cortical neurons convert correlated inputs into correlated outputs. We studied pyramidal neurons and two classes of GABAergic interneurons of layer 5 in neocortical brain slices obtained from rats of both sexes, and we stimulated them with biophysically realistic correlated inputs, generated using dynamic clamp. We found that the physiological differences between cell types manifested unique features in their capacity to transfer correlated inputs. We used linear response theory and computational modeling to gain clear insights into how cellular properties determine both the gain and timescale of correlation transfer, thus tying single-cell features with network interactions. Our results provide further ground for the functionally distinct roles played by various types of neuronal cells in the cortical microcircuit
    corecore