5,354 research outputs found

    Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid

    Full text link
    Hierarchical inverse dynamics based on cascades of quadratic programs have been proposed for the control of legged robots. They have important benefits but to the best of our knowledge have never been implemented on a torque controlled humanoid where model inaccuracies, sensor noise and real-time computation requirements can be problematic. Using a reformulation of existing algorithms, we propose a simplification of the problem that allows to achieve real-time control. Momentum-based control is integrated in the task hierarchy and a LQR design approach is used to compute the desired associated closed-loop behavior and improve performance. Extensive experiments on various balancing and tracking tasks show very robust performance in the face of unknown disturbances, even when the humanoid is standing on one foot. Our results demonstrate that hierarchical inverse dynamics together with momentum control can be efficiently used for feedback control under real robot conditions.Comment: 21 pages, 11 figures, 4 tables in Autonomous Robots (2015

    Push recovery with stepping strategy based on time-projection control

    Get PDF
    In this paper, we present a simple control framework for on-line push recovery with dynamic stepping properties. Due to relatively heavy legs in our robot, we need to take swing dynamics into account and thus use a linear model called 3LP which is composed of three pendulums to simulate swing and torso dynamics. Based on 3LP equations, we formulate discrete LQR controllers and use a particular time-projection method to adjust the next footstep location on-line during the motion continuously. This adjustment, which is found based on both pelvis and swing foot tracking errors, naturally takes the swing dynamics into account. Suggested adjustments are added to the Cartesian 3LP gaits and converted to joint-space trajectories through inverse kinematics. Fixed and adaptive foot lift strategies also ensure enough ground clearance in perturbed walking conditions. The proposed structure is robust, yet uses very simple state estimation and basic position tracking. We rely on the physical series elastic actuators to absorb impacts while introducing simple laws to compensate their tracking bias. Extensive experiments demonstrate the functionality of different control blocks and prove the effectiveness of time-projection in extreme push recovery scenarios. We also show self-produced and emergent walking gaits when the robot is subject to continuous dragging forces. These gaits feature dynamic walking robustness due to relatively soft springs in the ankles and avoiding any Zero Moment Point (ZMP) control in our proposed architecture.Comment: 20 pages journal pape

    Walker-Assisted Gait in Rehabilitation: A Study of Biomechanics and Instrumentation

    Get PDF
    While walkers are commonly prescribed to improve patient stability and ambulatory ability, quantitative study of the biomechanical and functional requirements for effective walker use is limited. To date no one has addressed the changes in upper extremity kinetics that occur with the use of a standard walker, which was the objective of this study. A strain gauge-based walker instrumentation system was developed for the six degree-of-freedom measurement of resultant subject hand loads. The walker dynamometer was integrated with an upper extremity biomechanical model. Preliminary system data were collected for seven healthy, right-handed young adults following informed consent. Bilateral upper extremity kinematic data were acquired with a six camera Vicon motion analysis system using a Micro-VAX workstation. Internal joint moments at the wrist, elbow, and shoulder were determined in the three clinical planes using the inverse dynamics method. The walker dynamometer system allowed characterization of upper extremity loading demands. Significantly differing upper extremity loading patterns were Identified for three walker usage methods. Complete description of upper extremity kinetics and kinematics during walker-assisted gait may provide insight into walker design parameters and rehabilitative strategies

    A Hybrid Approach for Trajectory Control Design

    Full text link
    This work presents a methodology to design trajectory tracking feedback control laws, which embed non-parametric statistical models, such as Gaussian Processes (GPs). The aim is to minimize unmodeled dynamics such as undesired slippages. The proposed approach has the benefit of avoiding complex terramechanics analysis to directly estimate from data the robot dynamics on a wide class of trajectories. Experiments in both real and simulated environments prove that the proposed methodology is promising.Comment: 9 pages, 11 figure

    Improving grasping forces during the manipulation of unknown objects

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksMany of the solutions proposed for the object manipulation problem are based on the knowledge of the object features. The approach proposed in this paper intends to provide a simple geometrical approach to securely manipulate an unknown object based only on tactile and kinematic information. The tactile and kinematic data obtained during the manipulation is used to recognize the object shape (at least the local object curvature), allowing to improve the grasping forces when this information is added to the manipulation strategy. The approach has been fully implemented and tested using the Schunk Dexterous Hand (SDH2). Experimental results are shown to illustrate the efficiency of the approach.Peer ReviewedPostprint (author's final draft

    The kinematics of hyper-redundant robot locomotion

    Get PDF
    This paper considers the kinematics of hyper-redundant (or “serpentine”) robot locomotion over uneven solid terrain, and presents algorithms to implement a variety of “gaits”. The analysis and algorithms are based on a continuous backbone curve model which captures the robot's macroscopic geometry. Two classes of gaits, based on stationary waves and traveling waves of mechanism deformation, are introduced for hyper-redundant robots of both constant and variable length. We also illustrate how the locomotion algorithms can be used to plan the manipulation of objects which are grasped in a tentacle-like manner. Several of these gaits and the manipulation algorithm have been implemented on a 30 degree-of-freedom hyper-redundant robot. Experimental results are presented to demonstrate and validate these concepts and our modeling assumptions

    Motion Control of the Hybrid Wheeled-Legged Quadruped Robot Centauro

    Get PDF
    Emerging applications will demand robots to deal with a complex environment, which lacks the structure and predictability of the industrial workspace. Complex scenarios will require robot complexity to increase as well, as compared to classical topologies such as fixed-base manipulators, wheeled mobile platforms, tracked vehicles, and their combinations. Legged robots, such as humanoids and quadrupeds, promise to provide platforms which are flexible enough to handle real world scenarios; however, the improved flexibility comes at the cost of way higher control complexity. As a trade-off, hybrid wheeled-legged robots have been proposed, resulting in the mitigation of control complexity whenever the ground surface is suitable for driving. Following this idea, a new hybrid robot called Centauro has been developed inside the Humanoid and Human Centered Mechatronics lab at Istituto Italiano di Tecnologia (IIT). Centauro is a wheeled-legged quadruped with a humanoid bi-manual upper-body. Differently from other platform of similar concept, Centauro employs customized actuation units, which provide high torque outputs, moderately fast motions, and the possibility to control the exerted torque. Moreover, with more than forty motors moving its limbs, Centauro is a very redundant platform, with the potential to execute many different tasks at the same time. This thesis deals with the design and development of a software architecture, and a control system, tailored to such a robot; both wheeled and legged locomotion strategies have been studied, as well as prioritized, whole-body and interaction controllers exploiting the robot torque control capabilities, and capable to handle the system redundancy. A novel software architecture, made of (i) a real-time robotic middleware, and (ii) a framework for online, prioritized Cartesian controller, forms the basis of the entire work

    Support polygon in the hybrid legged-wheeled CENTAURO robot: modelling and control

    Get PDF
    Search for the robot capable to perform well in the real-world has sparked an interest in the hybrid locomotion systems. The hybrid legged-wheeled robots combine the advantages of the standard legged and wheeled platforms by switching between the quick and efficient wheeled motion on the flat grounds and the more versatile legged mobility on the unstructured terrains. With the locomotion flexibility offered by the hybrid mobility and appropriate control tools, these systems have high potential to excel in practical applications adapting effectively to real-world during locomanipuation operations. In contrary to their standard well-studied counterparts, kinematics of this newer type of robotic platforms has not been fully understood yet. This gap may lead to unexpected results when the standard locomotion methods are applied to hybrid legged-wheeled robots. To better understand mobility of the hybrid legged-wheeled robots, the model that describes the support polygon of a general hybrid legged-wheeled robot as a function of the wheel angular velocities without assumptions on the robot kinematics or wheel camber angle is proposed and analysed in this thesis. Based on the analysis of the developed support polygon model, a robust omnidirectional driving scheme has been designed. A continuous wheel motion is resolved through the Inverse Kinematics (IK) scheme, which generates robot motion compliant with the Non-Sliding Pure-Rolling (NSPR) condition. A higher-level scheme resolving a steering motion to comply with the non-holonomic constraint and to tackle the structural singularity is proposed. To improve the robot performance in presence to the unpredicted circumstances, the IK scheme has been enhanced with the introduction of a new reactive support polygon adaptation task. To this end, a novel quadratic programming task has been designed to push the system Support Polygon Vertices (SPVs) away from the robot Centre of Mass (CoM), while respecting the leg workspace limits. The proposed task has been expressed through the developed SPV model to account for the hardware limits. The omnidirectional driving and reactive control schemes have been verified in the simulation and hardware experiments. To that end, the simulator for the CENTAURO robot that models the actuation dynamics and the software framework for the locomotion research have been developed
    • …
    corecore