18,121 research outputs found

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Alternate marking-based network telemetry for industrial WSNs

    Get PDF
    For continuous, persistent and problem-free operation of Industrial Wireless Sensor Networks (IWSN), it is critical to have visibility and awareness into what is happening on the network at any one time. Especially, for the use cases with strong needs for deterministic and real-time network services with latency and reliability guarantees, it is vital to monitor network devices continuously to guarantee their functioning, detect and isolate relevant problems and verify if all system requirements are being met simultaneously. In this context, this article investigates a light-weight telemetry solution for IWSNs, which enables the collection of accurate and continuous flowbased telemetry information, while adding no overhead on the monitored packets. The proposed monitoring solution adopts the recent Alternate Marking Performance Monitoring (AMPM) concept and mainly targets measuring end-to-end and hopby-hop reliability and delay performance in critical application flows. Besides, the technical capabilities and characteristics of the proposed solution are evaluated via a real-life implementation and practical experiments, validating its suitability for IWSNs

    Shuttle payload S-band communications system

    Get PDF
    The Shuttle payload S-band communications system design, operational capabilities, and performance are described in detail. System design requirements, overall system and configuration and operation, and laboratory/flight test results are presented. Payload communications requirements development is discussed in terms of evolvement of requirements as well as the resulting technical challenges encountered in meeting the initial requirements. Initial design approaches are described along with cost-saving initiatives that subsequently had to be made. The resulting system implementation that was finally adopted is presented along with a functional description of the system operation. A description of system test results, problems encountered, how the problems were solved, and the system flight experience to date is presented. Finally, a summary of the advancements made and the lessons learned is discussed

    The Deep Space Network: A Radio Communications Instrument for Deep Space Exploration

    Get PDF
    The primary purpose of the Deep Space Network (DSN) is to serve as a communications instrument for deep space exploration, providing communications between the spacecraft and the ground facilities. The uplink communications channel provides instructions or commands to the spacecraft. The downlink communications channel provides command verification and spacecraft engineering and science instrument payload data

    Shuttle S-band communications technical concepts

    Get PDF
    Using the S-band communications system, shuttle orbiter can communicate directly with the Earth via the Ground Spaceflight Tracking and Data Network (GSTDN) or via the Tracking and Data Relay Satellite System (TDRSS). The S-band frequencies provide the primary links for direct Earth and TDRSS communications during all launch and entry/landing phases of shuttle missions. On orbit, S-band links are used when TDRSS Ku-band is not available, when conditions require orbiter attitudes unfavorable to Ku-band communications, or when the payload bay doors are closed. the S-band communications functional requirements, the orbiter hardware configuration, and the NASA S-band communications network are described. The requirements and implementation concepts which resulted in techniques for shuttle S-band hardware development discussed include: (1) digital voice delta modulation; (2) convolutional coding/Viterbi decoding; (3) critical modulation index for phase modulation using a Costas loop (phase-shift keying) receiver; (4) optimum digital data modulation parameters for continuous-wave frequency modulation; (5) intermodulation effects of subcarrier ranging and time-division multiplexing data channels; (6) radiofrequency coverage; and (7) despreading techniques under poor signal-to-noise conditions. Channel performance is reviewed

    BPFabric: Data Plane Programmability for Software Defined Networks

    Get PDF
    In its current form, OpenFlow, the de facto implementation of SDN, separates the network’s control and data planes allowing a central controller to alter the matchaction pipeline using a limited set of fields and actions. To support new protocols, forwarding logic, telemetry, monitoring or even middlebox-like functions the currently available programmability in SDN is insufficient. In this paper, we introduce BPFabric, a platform, protocol, and language-independent architecture to centrally program and monitor the data plane. BPFabric leverages eBPF, a platform and protocol independent instruction set to define the packet processing and forwarding functionality of the data plane. We introduce a control plane API that allows data plane functions to be deployed onthe-fly, reporting events of interest and exposing network internal state. We present a raw socket and DPDK implementation of the design, the former for large-scale experimentation using environment such as Mininet and the latter for high-performance low-latency deployments. We show through examples that functions unrealisable in OpenFlow can leverage this flexibility while achieving similar or better performance to today’s static design

    Band-monitoring Payload for a CubeSat Satellite

    Get PDF
    During changing sun activity, the ionosphere is responding accordingly and therefore it is interesting to observe the propagation behavior of shortwave bands. For the above mentioned purpose we have designed a band-monitoring payload for an experimental CubeSat satellite. The payload consists of a receiver, which is able to receive SSB modulated narrowband signals in 28 MHz uplink band, and a transmitter with FM modulation in UHF downlink band. The receiver frequency is selected to be at the center of radio amateur activity with low data rate digital modulations

    Telecommunications and data acquisition support for the Pioneer Venus Project: Pioneers 12 and 13, prelaunch through March 1984

    Get PDF
    The support provided by the Telecommunications and Data Acquisition organization of the Jet Propulsion Laboratory (JPL) to the Pioneer Venus missions is described. The missions were the responsibility of the Ames Research Center (ARC). The Pioneer 13 mission and its spacecraft design presented one of the greatest challenges to the Deep Space Network (DSN) in the implementation and operation of new capabilities. The four probes that were to enter the atmosphere of Venus were turned on shortly before arrival at Venus, and the DSN had to acquire each of these probes in order to recover the telemetry being transmitted. Furthermore, a science experiment involving these probes descending through the atmosphere required a completed new data type to be generated at the ground stations. This new data type is known as the differential very long baseline interferometry. Discussions between ARC and JPL of the implementation requirements involved trade-offs in spacecraft design and led to a very successful return of science data. Specific implementation and operational techniques are discussed, not only for the prime mission, but also for the extended support to the Pioneer 12 spacecraft (in orbit around Venus) with its science instruments including that for radar observations of the planet

    Tracking and data system support for the Viking 1975 mission to Mars. Volume 1: Prelaunch planning, implementation, and testing

    Get PDF
    The tracking and data acquisition support for the 1975 Viking Missions to Mars is described. The history of the effort from its inception in late 1968 through the launches of Vikings 1 and 2 from Cape Kennedy in August and September 1975 is given. The Viking mission requirements for tracking and data acquisition support in both the near earth and deep space phases involved multiple radar tracking and telemetry stations, and communications networks together with the global network of tracking stations, communications, and control center. The planning, implementation, testing and management of the program are presented
    corecore