304 research outputs found

    FRoGGeR: Fast Robust Grasp Generation via the Min-Weight Metric

    Full text link
    Many approaches to grasp synthesis optimize analytic quality metrics that measure grasp robustness based on finger placements and local surface geometry. However, generating feasible dexterous grasps by optimizing these metrics is slow, often taking minutes. To address this issue, this paper presents FRoGGeR: a method that quickly generates robust precision grasps using the min-weight metric, a novel, almost-everywhere differentiable approximation of the classical epsilon grasp metric. The min-weight metric is simple and interpretable, provides a reasonable measure of grasp robustness, and admits numerically efficient gradients for smooth optimization. We leverage these properties to rapidly synthesize collision-free robust grasps - typically in less than a second. FRoGGeR can refine the candidate grasps generated by other methods (heuristic, data-driven, etc.) and is compatible with many object representations (SDFs, meshes, etc.). We study FRoGGeR's performance on over 40 objects drawn from the YCB dataset, outperforming a competitive baseline in computation time, feasibility rate of grasp synthesis, and picking success in simulation. We conclude that FRoGGeR is fast: it has a median synthesis time of 0.834s over hundreds of experiments.Comment: Accepted at IROS 2023. The arXiv version contains the appendix, which does not appear in the conference versio

    Characterisation and State Estimation of Magnetic Soft Continuum Robots

    Get PDF
    Minimally invasive surgery has become more popular as it leads to less bleeding, scarring, pain, and shorter recovery time. However, this has come with counter-intuitive devices and steep surgeon learning curves. Magnetically actuated Soft Continuum Robots (SCR) have the potential to replace these devices, providing high dexterity together with the ability to conform to complex environments and safe human interactions without the cognitive burden for the clinician. Despite considerable progress in the past decade in their development, several challenges still plague SCR hindering their full realisation. This thesis aims at improving magnetically actuated SCR by addressing some of these challenges, such as material characterisation and modelling, and sensing feedback and localisation. Material characterisation for SCR is essential for understanding their behaviour and designing effective modelling and simulation strategies. In this work, the material properties of commonly employed materials in magnetically actuated SCR, such as elastic modulus, hyper-elastic model parameters, and magnetic moment were determined. Additionally, the effect these parameters have on modelling and simulating these devices was investigated. Due to the nature of magnetic actuation, localisation is of utmost importance to ensure accurate control and delivery of functionality. As such, two localisation strategies for magnetically actuated SCR were developed, one capable of estimating the full 6 degrees of freedom (DOFs) pose without any prior pose information, and another capable of accurately tracking the full 6-DOFs in real-time with positional errors lower than 4~mm. These will contribute to the development of autonomous navigation and closed-loop control of magnetically actuated SCR

    Probabilistic Inference for Model Based Control

    Get PDF
    Robotic systems are essential for enhancing productivity, automation, and performing hazardous tasks. Addressing the unpredictability of physical systems, this thesis advances robotic planning and control under uncertainty, introducing learning-based methods for managing uncertain parameters and adapting to changing environments in real-time. Our first contribution is a framework using Bayesian statistics for likelihood-free inference of model parameters. This allows employing complex simulators for designing efficient, robust controllers. The method, integrating the unscented transform with a variant of information theoretical model predictive control, shows better performance in trajectory evaluation compared to Monte Carlo sampling, easing the computational load in various control and robotics tasks. Next, we reframe robotic planning and control as a Bayesian inference problem, focusing on the posterior distribution of actions and model parameters. An implicit variational inference algorithm, performing Stein Variational Gradient Descent, estimates distributions over model parameters and control inputs in real-time. This Bayesian approach effectively handles complex multi-modal posterior distributions, vital for dynamic and realistic robot navigation. Finally, we tackle diversity in high-dimensional spaces. Our approach mitigates underestimation of uncertainty in posterior distributions, which leads to locally optimal solutions. Using the theory of rough paths, we develop an algorithm for parallel trajectory optimisation, enhancing solution diversity and avoiding mode collapse. This method extends our variational inference approach for trajectory estimation, employing diversity-enhancing kernels and leveraging path signature representation of trajectories. Empirical tests, ranging from 2-D navigation to robotic manipulators in cluttered environments, affirm our method's efficiency, outperforming existing alternatives

    RoboPianist: A Benchmark for High-Dimensional Robot Control

    Full text link
    We introduce a new benchmarking suite for high-dimensional control, targeted at testing high spatial and temporal precision, coordination, and planning, all with an underactuated system frequently making-and-breaking contacts. The proposed challenge is mastering the piano through bi-manual dexterity, using a pair of simulated anthropomorphic robot hands. We call it RoboPianist, and the initial version covers a broad set of 150 variable-difficulty songs. We investigate both model-free and model-based methods on the benchmark, characterizing their performance envelopes. We observe that while certain existing methods, when well-tuned, can achieve impressive levels of performance in certain aspects, there is significant room for improvement. RoboPianist provides a rich quantitative benchmarking environment, with human-interpretable results, high ease of expansion by simply augmenting the repertoire with new songs, and opportunities for further research, including in multi-task learning, zero-shot generalization, multimodal (sound, vision, touch) learning, and imitation. Supplementary information, including videos of our control policies, can be found at https://kzakka.com/robopianist

    Progressive Transfer Learning for Dexterous In-Hand Manipulation with Multi-Fingered Anthropomorphic Hand

    Full text link
    Dexterous in-hand manipulation for a multi-fingered anthropomorphic hand is extremely difficult because of the high-dimensional state and action spaces, rich contact patterns between the fingers and objects. Even though deep reinforcement learning has made moderate progress and demonstrated its strong potential for manipulation, it is still faced with certain challenges, such as large-scale data collection and high sample complexity. Especially, for some slight change scenes, it always needs to re-collect vast amounts of data and carry out numerous iterations of fine-tuning. Remarkably, humans can quickly transfer learned manipulation skills to different scenarios with little supervision. Inspired by human flexible transfer learning capability, we propose a novel dexterous in-hand manipulation progressive transfer learning framework (PTL) based on efficiently utilizing the collected trajectories and the source-trained dynamics model. This framework adopts progressive neural networks for dynamics model transfer learning on samples selected by a new samples selection method based on dynamics properties, rewards and scores of the trajectories. Experimental results on contact-rich anthropomorphic hand manipulation tasks show that our method can efficiently and effectively learn in-hand manipulation skills with a few online attempts and adjustment learning under the new scene. Compared to learning from scratch, our method can reduce training time costs by 95%.Comment: 12 pages, 7 figures, submitted to TNNL

    Surgical Subtask Automation for Intraluminal Procedures using Deep Reinforcement Learning

    Get PDF
    Intraluminal procedures have opened up a new sub-field of minimally invasive surgery that use flexible instruments to navigate through complex luminal structures of the body, resulting in reduced invasiveness and improved patient benefits. One of the major challenges in this field is the accurate and precise control of the instrument inside the human body. Robotics has emerged as a promising solution to this problem. However, to achieve successful robotic intraluminal interventions, the control of the instrument needs to be automated to a large extent. The thesis first examines the state-of-the-art in intraluminal surgical robotics and identifies the key challenges in this field, which include the need for safe and effective tool manipulation, and the ability to adapt to unexpected changes in the luminal environment. To address these challenges, the thesis proposes several levels of autonomy that enable the robotic system to perform individual subtasks autonomously, while still allowing the surgeon to retain overall control of the procedure. The approach facilitates the development of specialized algorithms such as Deep Reinforcement Learning (DRL) for subtasks like navigation and tissue manipulation to produce robust surgical gestures. Additionally, the thesis proposes a safety framework that provides formal guarantees to prevent risky actions. The presented approaches are evaluated through a series of experiments using simulation and robotic platforms. The experiments demonstrate that subtask automation can improve the accuracy and efficiency of tool positioning and tissue manipulation, while also reducing the cognitive load on the surgeon. The results of this research have the potential to improve the reliability and safety of intraluminal surgical interventions, ultimately leading to better outcomes for patients and surgeons

    Path and Motion Planning for Autonomous Mobile 3D Printing

    Get PDF
    Autonomous robotic construction was envisioned as early as the ‘90s, and yet, con- struction sites today look much alike ones half a century ago. Meanwhile, highly automated and efficient fabrication methods like Additive Manufacturing, or 3D Printing, have seen great success in conventional production. However, existing efforts to transfer printing technology to construction applications mainly rely on manufacturing-like machines and fail to utilise the capabilities of modern robotics. This thesis considers using Mobile Manipulator robots to perform large-scale Additive Manufacturing tasks. Comprised of an articulated arm and a mobile base, Mobile Manipulators, are unique in their simultaneous mobility and agility, which enables printing-in-motion, or Mobile 3D Printing. This is a 3D printing modality, where a robot deposits material along larger-than-self trajectories while in motion. Despite profound potential advantages over existing static manufacturing-like large- scale printers, Mobile 3D printing is underexplored. Therefore, this thesis tack- les Mobile 3D printing-specific challenges and proposes path and motion planning methodologies that allow this printing modality to be realised. The work details the development of Task-Consistent Path Planning that solves the problem of find- ing a valid robot-base path needed to print larger-than-self trajectories. A motion planning and control strategy is then proposed, utilising the robot-base paths found to inform an optimisation-based whole-body motion controller. Several Mobile 3D Printing robot prototypes are built throughout this work, and the overall path and motion planning strategy proposed is holistically evaluated in a series of large-scale 3D printing experiments

    Active Tactile Sensing for Texture Perception in Robotic Systems

    Get PDF
    This thesis presents a comprehensive study of tactile sensing, particularly on the prob- lem of active texture perception. It includes a brief introduction to tactile sensing technology and the neural basis for tactile perception. It follows the literature review of textural percep- tion with tactile sensing. I propose a decoding and perception pipeline to tackle fine-texture classification/identification problems via active touching. Experiments are conducted using a 7DOF robotic arm with a finger-shaped tactile sensor mounted on the end-effector to per- form sliding/rubbing movements on multiple fabrics. Low-dimensional frequency features are extracted from the raw signals to form a perceptive feature space, where tactile signals are mapped and segregated into fabric classes. Fabric classes can be parameterized and sim- plified in the feature space using elliptical equations. Results from experiments of varied control parameters are compared and visualized to show that different exploratory move- ments have an apparent impact on the perceived tactile information. It implies the possibil- ity of optimising the robotic movements to improve the textural classification/identification performance

    Data-driven robotic manipulation of cloth-like deformable objects : the present, challenges and future prospects

    Get PDF
    Manipulating cloth-like deformable objects (CDOs) is a long-standing problem in the robotics community. CDOs are flexible (non-rigid) objects that do not show a detectable level of compression strength while two points on the article are pushed towards each other and include objects such as ropes (1D), fabrics (2D) and bags (3D). In general, CDOs’ many degrees of freedom (DoF) introduce severe self-occlusion and complex state–action dynamics as significant obstacles to perception and manipulation systems. These challenges exacerbate existing issues of modern robotic control methods such as imitation learning (IL) and reinforcement learning (RL). This review focuses on the application details of data-driven control methods on four major task families in this domain: cloth shaping, knot tying/untying, dressing and bag manipulation. Furthermore, we identify specific inductive biases in these four domains that present challenges for more general IL and RL algorithms.Publisher PDFPeer reviewe

    Simultaneous Position-and-Stiffness Control of Underactuated Antagonistic Tendon-Driven Continuum Robots

    Full text link
    Continuum robots have gained widespread popularity due to their inherent compliance and flexibility, particularly their adjustable levels of stiffness for various application scenarios. Despite efforts to dynamic modeling and control synthesis over the past decade, few studies have focused on incorporating stiffness regulation in their feedback control design; however, this is one of the initial motivations to develop continuum robots. This paper aims to address the crucial challenge of controlling both the position and stiffness of a class of highly underactuated continuum robots that are actuated by antagonistic tendons. To this end, the first step involves presenting a high-dimensional rigid-link dynamical model that can analyze the open-loop stiffening of tendon-driven continuum robots. Based on this model, we propose a novel passivity-based position-and-stiffness controller adheres to the non-negative tension constraint. To demonstrate the effectiveness of our approach, we tested the theoretical results on our continuum robot, and the experimental results show the efficacy and precise performance of the proposed methodology
    corecore