69 research outputs found

    A Study in GPS-Denied Navigation Using Synthetic Aperture Radar

    Get PDF
    In modern navigation systems, GPS is vital to accurately piloting a vehicle. This is especially true in autonomous vehicles, such as UAVs, which have no pilot. Unfortunately, GPS signals can be easily jammed or spoofed. For example, canyons and urban cities create an environment where the sky is obstructed and make GPS signals unreliable. Additionally, hostile individuals can transmit personal signals intended to block or spoof GPS signals. In these situations, it is important to find a means of navigation that doesn’t rely on GPS. Navigating without GPS means that other types of sensors or instruments must be used to replace the information lost from GPS. Some examples of additional sensors include cameras, altimeters, magnetometers, and radar. The work presented in this thesis shows how radar can be used to navigate without GPS. Specifically, synthetic aperture radar (SAR) is used, which is a method of processing radar data to form images of a landscape similar to images captured using a camera. SAR presents its own unique set of benefits and challenges. One major benefit of SAR is that it can produce images of an area even at night or through cloud cover. Additionally, SAR can image a wide swath of land at an angle that would be difficult for a camera to achieve. However, SAR is more computationally complex than other imaging sensors. Image quality is also highly dependent on the quality of navigation information available. In general, SAR requires that good navigation data be had in order to form SAR images. The research here explores the reverse problem where SAR images are formed without good navigation data and then good navigation data is inferred from the images. This thesis performs feasibility studies and real data implementations that show how SAR can be used in navigation without the presence of GPS. Derivations and background materials are provided. Validation methods and additional discussions are provided on the results of each portion of research

    Map-Based Localization for Unmanned Aerial Vehicle Navigation

    Get PDF
    Unmanned Aerial Vehicles (UAVs) require precise pose estimation when navigating in indoor and GNSS-denied / GNSS-degraded outdoor environments. The possibility of crashing in these environments is high, as spaces are confined, with many moving obstacles. There are many solutions for localization in GNSS-denied environments, and many different technologies are used. Common solutions involve setting up or using existing infrastructure, such as beacons, Wi-Fi, or surveyed targets. These solutions were avoided because the cost should be proportional to the number of users, not the coverage area. Heavy and expensive sensors, for example a high-end IMU, were also avoided. Given these requirements, a camera-based localization solution was selected for the sensor pose estimation. Several camera-based localization approaches were investigated. Map-based localization methods were shown to be the most efficient because they close loops using a pre-existing map, thus the amount of data and the amount of time spent collecting data are reduced as there is no need to re-observe the same areas multiple times. This dissertation proposes a solution to address the task of fully localizing a monocular camera onboard a UAV with respect to a known environment (i.e., it is assumed that a 3D model of the environment is available) for the purpose of navigation for UAVs in structured environments. Incremental map-based localization involves tracking a map through an image sequence. When the map is a 3D model, this task is referred to as model-based tracking. A by-product of the tracker is the relative 3D pose (position and orientation) between the camera and the object being tracked. State-of-the-art solutions advocate that tracking geometry is more robust than tracking image texture because edges are more invariant to changes in object appearance and lighting. However, model-based trackers have been limited to tracking small simple objects in small environments. An assessment was performed in tracking larger, more complex building models, in larger environments. A state-of-the art model-based tracker called ViSP (Visual Servoing Platform) was applied in tracking outdoor and indoor buildings using a UAVs low-cost camera. The assessment revealed weaknesses at large scales. Specifically, ViSP failed when tracking was lost, and needed to be manually re-initialized. Failure occurred when there was a lack of model features in the cameras field of view, and because of rapid camera motion. Experiments revealed that ViSP achieved positional accuracies similar to single point positioning solutions obtained from single-frequency (L1) GPS observations standard deviations around 10 metres. These errors were considered to be large, considering the geometric accuracy of the 3D model used in the experiments was 10 to 40 cm. The first contribution of this dissertation proposes to increase the performance of the localization system by combining ViSP with map-building incremental localization, also referred to as simultaneous localization and mapping (SLAM). Experimental results in both indoor and outdoor environments show sub-metre positional accuracies were achieved, while reducing the number of tracking losses throughout the image sequence. It is shown that by integrating model-based tracking with SLAM, not only does SLAM improve model tracking performance, but the model-based tracker alleviates the computational expense of SLAMs loop closing procedure to improve runtime performance. Experiments also revealed that ViSP was unable to handle occlusions when a complete 3D building model was used, resulting in large errors in its pose estimates. The second contribution of this dissertation is a novel map-based incremental localization algorithm that improves tracking performance, and increases pose estimation accuracies from ViSP. The novelty of this algorithm is the implementation of an efficient matching process that identifies corresponding linear features from the UAVs RGB image data and a large, complex, and untextured 3D model. The proposed model-based tracker improved positional accuracies from 10 m (obtained with ViSP) to 46 cm in outdoor environments, and improved from an unattainable result using VISP to 2 cm positional accuracies in large indoor environments. The main disadvantage of any incremental algorithm is that it requires the camera pose of the first frame. Initialization is often a manual process. The third contribution of this dissertation is a map-based absolute localization algorithm that automatically estimates the camera pose when no prior pose information is available. The method benefits from vertical line matching to accomplish a registration procedure of the reference model views with a set of initial input images via geometric hashing. Results demonstrate that sub-metre positional accuracies were achieved and a proposed enhancement of conventional geometric hashing produced more correct matches - 75% of the correct matches were identified, compared to 11%. Further the number of incorrect matches was reduced by 80%

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Airborne Navigation by Fusing Inertial and Camera Data

    Get PDF
    Unmanned aircraft systems (UASs) are often used as measuring system. Therefore, precise knowledge of their position and orientation are required. This thesis provides research in the conception and realization of a system which combines GPS-assisted inertial navigation systems with the advances in the area of camera-based navigation. It is presented how these complementary approaches can be used in a joint framework. In contrast to widely used concepts utilizing only one of the two approaches, a more robust overall system is realized. The presented algorithms are based on the mathematical concepts of rigid body motions. After derivation of the underlying equations, the methods are evaluated in numerical studies and simulations. Based on the results, real-world systems are used to collect data, which is evaluated and discussed. Two approaches for the system calibration, which describes the offsets between the coordinate systems of the sensors, are proposed. The first approach integrates the parameters of the system calibration in the classical bundle adjustment. The optimization is presented very descriptive in a graph based formulation. Required is a high precision INS and data from a measurement flight. In contrast to classical methods, a flexible flight course can be used and no cost intensive ground control points are required. The second approach enables the calibration of inertial navigation systems with a low positional accuracy. Line observations are used to optimize the rotational part of the offsets. Knowledge of the offsets between the coordinate systems of the sensors allows transforming measurements bidirectional. This is the basis for a fusion concept combining measurements from the inertial navigation system with an approach for the visual navigation. As a result, more robust estimations of the own position and orientation are achieved. Moreover, the map created from the camera images is georeferenced. It is shown how this map can be used to navigate an unmanned aerial system back to its starting position in the case of a disturbed or failed GPS reception. The high precision of the map allows the navigation through previously unexplored area by taking into consideration the maximal drift for the camera-only navigation. The evaluated concept provides insight into the possibility of the robust navigation of unmanned aerial systems with complimentary sensors. The constantly increasing computing power allows the evaluation of big amounts of data and the development of new concept to fuse the information. Future navigation systems will use the data of all available sensors to achieve the best navigation solution at any time

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    Biologically Inspired Vision and Control for an Autonomous Flying Vehicle

    Get PDF
    This thesis makes a number of new contributions to control and sensing for unmanned vehicles. I begin by developing a non-linear simulation of a small unmanned helicopter and then proceed to develop new algorithms for control and sensing using the simulation. The work is field-tested in successful flight trials of biologically inspired vision and neural network control for an unstable rotorcraft. The techniques are more robust and more easily implemented on a small flying vehicle than previously attempted methods. ¶ ..

    1999 Flight Mechanics Symposium

    Get PDF
    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on May 18-20, 1999. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers
    • …
    corecore