728 research outputs found

    Self-interference cancellation in underwater acoustic communications systems using orthogonal pilots in IBFD

    Get PDF
    This paper proposes a Self-interference (SI) cancellation system model of Underwater acoustic (UWA) communication for in-band full-duplex (IBFD) technology. The SI channel is separated from the Far channel by exploiting a concurrently orthogonal pilot channel estimation technique using two orthogonal frequency-division multiplexing (OFDM) blocks to establish orthogonality between them based on a unitary matrix. Compared to the half-duplex channel estimator, the mean squared error (MSE) and the bit error rate (BER) provided strong evidence for the efficiency of the proposed SI cancellation. Since full-duplex systems are more efficient than half-duplex ones, the proposed approach might be seen as a viable option for them. The proposed method proved effective when used with a fixed full-duplex (FD) position and FD shifting of up to 4°. Different channel lengths and distances are adopted to evaluate the proposed method. Initial findings indicate that MSE for the SI channel minimum mean-square error (MMSE) estimator at 20 dB is 0.118 · 10−3, for fixed FD. In addition, this paper presents a geometry channel model for the Far channel in the IBFD underwater communication system that describes the propagation delay of the multipath reflection. The simulation results for the multipath propagation delay spread are similar to the traditional results, with the delay spread of the suggested model reaching (79 ms), which is close to the Bellhop simulator result (78 ms)

    TDMA frame design for a prototype underwater RF

    Get PDF
    Very low frequency electromagnetic communication system is used in a small scale underwater wireless sensor network for coastal monitoring purposes, as recent research has demonstrated distinct advantages of radio waves compared to acoustic and optical waves in shallow water conditions. This paper describes the detailed TDMA and packet design process for the prototype sensor system. The lightweight protocol is time division based in order to fit the unique characteristics and specifications of the network. Evaluations are based on initial beach trial as well as modeling and simulations

    Adaptive Nonlinear Equalizer for Full-Duplex Underwater Acoustic Systems

    Get PDF

    Re-Evaluation of RF Electromagnetic Communication in Underwater Sensor Networks

    Get PDF
    Most underwater wireless networks use acoustic waves as the transmission medium nowadays, but the chances of getting much more out of acoustic modems are quite remote. Optical links are impractical for many underwater applications. Given modern operational requirements and digital communications technology, the time is now ripe for re-evaluating the role of electromagnetic signals in underwater environments. The research presented in this article is motivated by the limitations of current and established wireless underwater techniques, as well as the potential that electromagnetic waves can offer to underwater applications. A case study is presented that uses electromagnetic technology in a small-scale underwater wireless sensor network. The results demonstrate the likely effectiveness of the designated network

    TDMA frame design for a prototype underwater RF communication network

    Get PDF
    This document is the Accepted Manuscript version of the following article: Xianhui Che, Ian Wells, Gordon Dickers, and Paul Kear, ‘TDMA frame design for a prototype underwater RF communication network’, Ad Hoc Networks, Vol. 10 (3): 317-327, first available online 23 July 2011. The version of record is available online at doi: http://dx.doi.org/10.1016/j.adhoc.2011.07.002 © 2011 Elsevier B. V. All rights reserved.Very low frequency electromagnetic communication system is used in a small scale underwater wireless sensor network for coastal monitoring purposes, as recent research has demonstrated distinct advantages of radio waves compared to acoustic and optical waves in shallow water conditions. This paper describes the detailed TDMA and packet design process for the prototype sensor system. The lightweight protocol is time division based in order to fit the unique characteristics and specifications of the network. Evaluations are based on initial beach trial as well as modeling and simulations.Peer reviewe

    Full-duplex acoustic interaction system for cognitive experiments with cetaceans

    Full text link
    Cetaceans show high cognitive abilities and strong social bonds. Acoustics is their primary modality to communicate and sense the environment. Research on their echolocation and vocalizations with conspecifics and with humans typically uses visual and tactile systems adapted from research on primates or birds. Such research would benefit from a purely acoustic communication system in which signals flow in both directions simultaneously. We designed and implemented a full duplex system to acoustically interact with cetaceans in the wild, featuring digital echo-suppression. We pilot tested the system in Arctic Norway and achieved an echo suppression of 18 dB leaving room for technical improvements addressed in the discussion. Nevertheless, the system enabled vocal interaction with the underwater acoustic scene by allowing experimenters to listen while producing sounds. We describe our motivations, then present our pilot deployment and give examples of initial explorative attempts to vocally interact with wild orcas and humpback whales
    corecore