518 research outputs found

    Quantitative assessment of brain perfusion with magnetic resonance imaging

    Get PDF
    This thesis focuses on assessing blood supply to brain tissue using MRI. For Dynamic Susceptibility Contrast-MRI a series of images is acquired during the passage of a bolus contrast agent through the brain up to the point that the contrast agent is equally mixed within the total blood pool. The tissue MR signal holds the hemodynamic information and the cerebral blood flow and volume. A reference or Arterial Input Function (AIF) measurement close to the brain tissue is required to enable quantification of perfusion. A special focus of this thesis lies on how to measure a correct AIF. A correct shape of the AIF is crucial for absolute or even relative perfusion values. A correct peak-height is necessary for absolute perfusion quantification, but an erroneous peak-height in combination with a correct shape of the AIF can still produce correct relative values for cerebral blood flow and volume. Therefore, the first objective should be to measure the correct shape of the AIF, whereas the measurement of the peak-height of the AIF should be considered of secondary importance.UBL - phd migration 201

    Study protocol of validating a numerical model to assess the blood flow in the circle of Willis

    Get PDF
    Introduction We developed a zero-dimensional (0D) model to assess the patient-specific haemodynamics in the circle of Willis (CoW). Similar numerical models for simulating the cerebral blood flow (CBF) had only been validated qualitatively in healthy volunteers by magnetic resonance (MR) angiography and transcranial Doppler (TCD). This study aims to validate whether a numerical model can simulate patient-specific blood flow in the CoW under pathological conditions. Methods and analysis This study is a diagnostic accuracy study. We aim to collect data from a previously performed prospective study that involved patients with aneurysmal subarachnoid haemorrhage (aSAH) receiving both TCD and brain Computerd Tomography angiography (CTA) at the same day. The cerebral flow velocities are calculated by the 0D model, based on the vessel diameters measured on the CTA of each patient. In this study, TCD is considered the gold standard for measuring flow velocity in the CoW. The agreement will be analysed using Pearson correlation coefficients. Ethics and dissemination This study protocol has been approved by the Medical Ethics Review Board of the University Medical Center Groningen: METc2019/103. The results will be submitted to an international scientific journal for peer-reviewed publication. Trial registration number NL8114

    Dynamic Assessment of Cerebral Metabolic Rate of Oxygen (cmro2) With Magnetic Resonance Imaging

    Get PDF
    The brain is almost entirely dependent on oxidative metabolism to meet its energy requirements. As such, the cerebral metabolic rate of oxygen (CMRO2) is a direct measure of brain energy use. CMRO2 provides insight into brain functional architecture and has demonstrated potential as a clinical tool for assessing many common neurological disorders. Recent developments in magnetic resonance imaging (MRI)-based CMRO2 quantification have shown promise in spatially resolving CMRO2 in clinically feasible scan times. However, brain energy requirements are both spatially heterogeneous and temporally dynamic, responding to rapid changes in oxygen supply and demand in response to physiologic stimuli and neuronal activation. Methods for dynamic quantification of CMRO2 are lacking, and this dissertation aims to address this gap. Given the fundamental tradeoff between spatial and temporal resolution in MRI, we focus initially on the latter. Central to each proposed method is a model-based approach for deriving venous oxygen saturation (Yv) ā€“ the critical parameter for CMRO2 quantification ā€“ from MRI signal phase using susceptometry-based oximetry (SBO). First, a three-second-temporal-resolution technique for whole-brain quantification of Yv and CMRO2 is presented. This OxFlow method is applied to measure a small but highly significant increase in CMRO2 in response to volitional apnea. Next, OxFlow is combined with a competing approach for Yv quantification based on blood T2 relaxometry (TRUST). The resulting interleaved-TRUST (iTRUST) pulse sequence greatly improves T2-based CMRO2 quantification, while allowing direct, simultaneous comparison of SBO- and T2-based Yv. iTRUST is applied to assess the CMRO2 response to hypercapnia ā€“ a topic of great interest in functional neuroimaging ā€“ demonstrating significant biases between SBO- and T2-derived Yv and CMRO2. To address the need for dynamic and spatially resolved CMRO2 quantification, we explore blood-oxygen-level-dependent (BOLD) calibration, introducing a new calibration model and hybrid pulse sequence combining OxFlow with standard BOLD/CBF measurement. Preliminary results suggest Ox-BOLD provides improved calibration ā€œM-mapsā€ for converting BOLD signal to CMRO2. Finally, OxFlow is applied clinically to patients with obstructive sleep apnea (OSA). A small clinical pilot study demonstrates OSA-associated reductions in CMRO2 at baseline and in response to apnea, highlighting the potential utility of dynamic CMRO2 quantification in assessing neuropathology
    • ā€¦
    corecore