8 research outputs found

    In silico segmentations of lentivirus envelope sequences

    Get PDF
    BACKGROUND: The gene encoding the envelope of lentiviruses exhibits a considerable plasticity, particularly the region which encodes the surface (SU) glycoprotein. Interestingly, mutations do not appear uniformly along the sequence of SU, but they are clustered in restricted areas, called variable (V) regions, which are interspersed with relatively more stable regions, called constant (C) regions. We look for specific signatures of C/V regions, using hidden Markov models constructed with SU sequences of the equine, human, small ruminant and simian lentiviruses. RESULTS: Our models yield clear and accurate delimitations of the C/V regions, when the test set and the training set were made up of sequences of the same lentivirus, but also when they were made up of sequences of different lentiviruses. Interestingly, the models predicted the different regions of lentiviruses such as the bovine and feline lentiviruses, not used in the training set. Models based on composite training sets produce accurate segmentations of sequences of all these lentiviruses. CONCLUSION: Our results suggest that each C/V region has a specific statistical oligonucleotide composition, and that the C (respectively V) regions of one of these lentiviruses are statistically more similar to the C (respectively V) regions of the other lentiviruses, than to the V (respectively C) regions of the same lentivirus

    Imaging, Tracking and Computational Analyses of Virus Entry and Egress with the Cytoskeleton

    Get PDF
    Viruses have a dual nature: particles are “passive substances” lacking chemical energy transformation, whereas infected cells are “active substances” turning-over energy. How passive viral substances convert to active substances, comprising viral replication and assembly compartments has been of intense interest to virologists, cell and molecular biologists and immunologists. Infection starts with virus entry into a susceptible cell and delivers the viral genome to the replication site. This is a multi-step process, and involves the cytoskeleton and associated motor proteins. Likewise, the egress of progeny virus particles from the replication site to the extracellular space is enhanced by the cytoskeleton and associated motor proteins. This overcomes the limitation of thermal diffusion, and transports virions and virion components, often in association with cellular organelles. This review explores how the analysis of viral trajectories informs about mechanisms of infection. We discuss the methodology enabling researchers to visualize single virions in cells by fluorescence imaging and tracking. Virus visualization and tracking are increasingly enhanced by computational analyses of virus trajectories as well as in silico modeling. Combined approaches reveal previously unrecognized features of virus-infected cells. Using select examples of complementary methodology, we highlight the role of actin filaments and microtubules, and their associated motors in virus infections. In-depth studies of single virion dynamics at high temporal and spatial resolutions thereby provide deep insight into virus infection processes, and are a basis for uncovering underlying mechanisms of how cells function

    Evolution of overlapping reading frames in virus genomes

    Get PDF
    Viruses are formidable pathogens that represent the majority of biological entities in our planet, and their genomes are a source of interesting enigmas. One feature in which virus genomes are usually rich, is the presence of overlapping reading frames (OvRFs) — portions of the genome where the same nucleotide sequence encodes more than one protein. OvRFs are hypothesized to be used by viruses to encode proteins more compactly and to regulate transcription. In addition, OvRFs might be a source of gene novelty, facilitating the creation of new open reading frames (ORF) within the transcriptional context of existing ones. To characterize the distribution OvRFs in viruses, I analyzed 12,609 reference genomes from the NCBI virus database and discovered that, while the number of OvRFs increases the genome length, the overlapping regions tend to be shorter in longer genomes. I also demonstrated that dif- ferent frameshifts have distinct patterns in OvRFs. For example, +2 frameshifts are predominantly found in dsDNA viruses, whereas +0 frameshifts in RNA viruses tend to involve longer overlaps, which may increase the selective burden of the same nucleotide positions within codons. Further, I retrieved n = 8, 586 protein-coding sequences from n = 1, 224 reference genomes, and used an alignment-free method to cluster these sequences within virus families. I used these clusters to develop a new network-based representation of the distribution of OvRFs, which provides a means of visualizing and analyzing these genome features for each virus family. I also used these net- works to generate a high-level visualization of how overlapping genes are distributed among virus genomes in the same family. Evolution in overlapping genes is complicated because the effect of a nucleotide substitution has multiple contexts. To unravel the effects of OvRFs on virus evolution, I developed HexSE, a simulation model of nucleotide sequence evolution along a phylogeny that tracks the substitution rates at every nucleotide site. In HexSE, I implemented a customized data structure to efficiently track the substitution rates at every nucleotide site. These rates are determined by the stationary nucleotide frequencies, transition bias, and the distribution of selection biases (dN and dS) in the respective reading frames. Next, I compared HexSE simulations under varying settings to an alignment of actual hepatitis B virus (HBV) genomes, which revealed consistent drops in synonymous substitution rates (dS) in association with overlapping regions of an ORF. This thesis explores the cryptic information contained in viral genomes to help explain the evolutionary processes that shape them. In particular, understanding the impact of OvRFs on the evolution of virus genomes will provide us with crucial pieces of a significant puzzle — under- standing the origin of new genes in virus genomes, and thereby virus diversity

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin

    Développement de l'immunothérapie anti-tumorale médiée par vecteur bactérien vivant basé sur le système de sécrétion de type III de Pseudomonas aeruginosa

    Get PDF
    En raison de l'efficacité pour délivrer des antigènes directement dans le cytoplasme des CAPs in vivo, les vecteurs bactériens atténués et basés sur les propriétés du système de sécrétion de type 3 (SST3) attirent de plus en plus l'attention grâce à leur potentiel dans le développement des vaccins contre le cancer. Pseudomonas aeruginosa est un pathogène opportuniste responsable d'infections graves chez les personnes immunodéprimées, les grands brûlés et les patients atteints de la mucoviscidose. Cette pathogénicité repose sur de nombreux facteurs de virulence dont le SST3. Dans nos travaux précédents, le potentiel de souches atténuées de P. aeruginosa dans le domaine de la vaccination anti-tumorale a été démontré. Dans ce travail, nous avons optimisé des vecteurs vaccinaux basés sur le SST3 de P. aeruginosa pour des applications cliniques. Dans un premier temps, la performance de ces vecteurs bactériens a été améliorée en utilisant différents modèles de tumeurs murines. Ceci par : 1) l'ajout d'un épitope spécifique des lymphocytes CD4+ Th aux vecteurs; 2) l'application d'un modèle d'expression bi-antigénique aux vecteurs; 3) la construction de vecteurs induisant une réponse humorale. Dans un deuxième temps, la performance thérapeutique du vecteur bactérien a été optimisée par la modulation de la fréquence des injections et l'intervalle qui les sépare. Cette performance a été confirmée dans des modèles différents de tumeurs murines. Dans un troisième temps, un candidat qui pourrait être appliqué en clinique a été généré par l'adaptation d'un mutant (CHA-OAL) de P. aeruginosa totalement avirulent dans un milieu chimiquement défini. La très faible infectiosité de cette souche a été surmontée par en vaccinant à des emplacements multiples. Par la suite, le potentiel du vecteur bactérien dans l'immunothérapie humaine a été également évalué- dans un premiers temps-dans un modèle de souris humanisées (HHD). Enfin, nous avons observé qu'une immunité anti-vecteur pré-existante n'a pas d'effet sur l'efficacité de la vaccination par le vecteur bactérien. L'ensemble de nos résultats a mis en évidence le potentiel de nos vecteurs vivants et atténués de P. aeruginosa pour des applications dans des essais cliniques pertinents.Due to the endowed effective ability to deliver antigen to cytoplasm of APCs in vivo, T3SS based attenuated bacterial vectors attracted more and more attention for their potential interest in cancer vaccine development. Pseudomonas aeruginosa est un pathogène opportuniste responsable d'infections graves chez les personnes immunodéprimées, les grands brûlés et les patients atteints de la mucoviscidose. Cette pathogénicité repose sur de nombreux facteurs de virulence dont le système de sécrétion de type III (SSTT). In our previous work, the potential of attenuated P. aeruginosa strains as the carriers for anti-tumor vaccination purpose has been reported. In this work, we would like to strengthen P. aeruginosa T3SS based vaccine vectors and direct the development of these bacterial vectors toward clinical applications. First, the performance of these bacterial vectors has been improved in different murine cancer models by: 1) adding one CD4+ Th epitope to vectors; 2) applying bi-antigen expression pattern to vectors; 3) constructing potential humoral response inducing vectors. Second, the therapeutic performance of bacterial vector has been optimized by modulating injection frequency and interval and then be confirmed in murine tumor models. Third, one clinically applicable candidate has been generated by adapting one totally avirulent P. aeruginosa mutant (CHA-OAL) in a chemically defined medium and the poor infectivity of this new strain has been overcome by vaccinations at multiple loci. Fourth, the potential of bacterial vector for human immunotherapy has been further evaluated in one first level humanized mice (HHD) model. Finally, we observed that the pre-existing anti-vector immunity didn't impair the vaccination efficiency of bacteria vector. Taken together, our results highlight the potentials of our live attenuated P. aeruginosa vectors for applications in relevant clinical trials.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    corecore