2,516 research outputs found

    LTR-retrotransposons in R. exoculata and other crustaceans

    Get PDF
    Transposable elements are major constituents of eukaryote genomes and have a great impact on genome structure and stability. They can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution among several genomes is an essential condition to study their dynamics and to better understand their role in species evolution. LTR-retrotransposons have been reported in many diverse eukaryote species, describing a ubiquitous distribution. Given their abundance, diversity and their extended ranges in C-values, environment and life styles, crustaceans are a great taxon to investigate the genomic component of adaptation and its possible relationships with TEs. However, crustaceans have been greatly underrepresented in transposable element studies. Using both degenerate PCR and in silico approaches, we have identified 35 Copia and 46 Gypsy families in 15 and 18 crustacean species, respectively. In particular, we characterized several full-length elements from the shrimp Rimicaris exoculata that is listed as a model organism from hydrothermal vents. Phylogenic analyses show that Copia and Gypsy retrotransposons likely present two opposite dynamics within crustaceans. The Gypsy elements appear relatively frequent and diverse whereas Copia are much more homogeneous, as 29 of them belong to the single GalEa clade, and species- or lineage-dependent. Our results also support the hypothesis of the Copia retrotransposon scarcity in metazoans compared to Gypsy elements. In such a context, the GalEa-like elements present an outstanding wide distribution among eukaryotes, from fishes to red algae, and can be even highly predominant within a large taxon, such as Malacostraca. Their distribution among crustaceans suggests a dynamics that follows a "domino days spreading" branching process in which successive amplifications may interact positively

    Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion

    Get PDF
    In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.Fil: Vaschetto, Luis Maria Benjamin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Diversidad Animal I; Argentin

    The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation

    Get PDF
    We isolated and characterized a Brassica C genome-specific CACTA element, which was designated Bot1 (Brassica oleracea transposon 1). After analysing phylogenetic relationships, copy numbers and sequence similarity of Bot1 and Bot1 analogues in B. oleracea (C genome) versus Brassica rapa (A genome), we concluded that Bot1 has encountered several rounds of amplification in the oleracea genome only, and has played a major role in the recent rapa and oleracea genome divergence. We performed in silico analyses of the genomic organization and internal structure of Bot1, and established which segment of Bot1 is C-genome specific. Our work reports a fully characterized Brassica repetitive sequence that can distinguish the Brassica A and C chromosomes in the allotetraploid Brassica napus, by fluorescent in situ hybridization. We demonstrated that Bot1 carries a host S locus-associated SLL3 gene copy. We speculate that Bot1 was involved in the proliferation of SLL3 around the Brassica genome. The present study reinforces the assumption that transposons are a major driver of genome and gene evolution in higher plants

    Amplified fragment length homoplasy: in silico analysis for model and non-model species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>AFLP markers are widely used in evolutionary genetics and ecology. However the frequent occurrence of non-homologous co-migrating fragments (homoplasy) both at the intra- and inter-individual levels in AFLP data sets is known to skew key parameters in population genetics. Geneticists can take advantage of the growing number of full genome sequences available for model species to study AFLP homoplasy and to predict it in non-model species.</p> <p>Results</p> <p>In this study we performed <it>in silico </it>AFLPs on the complete genome of three model species to predict intra-individual homoplasy in a prokaryote (<it>Bacillus thuringiensis </it>ser. <it>konkukian</it>), a plant (<it>Arabidopsis thaliana</it>) and an animal (<it>Aedes aegypti</it>). In addition, we compared <it>in silico </it>AFLPs to empirical data obtained from three related non-model species (<it>Bacillus thuringiensis </it>ser. <it>israelensis, Arabis alpina </it>and <it>Aedes rusticus</it>). Our results show that homoplasy rate sharply increases with the number of peaks per profile. However, for a given number of peaks per profile, genome size or taxonomical range had no effect on homoplasy. Furthermore, the number of co-migrating fragments in a single peak was dependent on the genome richness in repetitive sequences: we found up to 582 co-migrating fragments in <it>Ae. aegypti</it>. Finally, we show that <it>in silico </it>AFLPs can help to accurately predict AFLP profiles in related non-model species.</p> <p>Conclusions</p> <p>These predictions can be used to tackle current issues in the planning of AFLP studies by limiting homoplasy rate and population genetic estimation bias. ISIF (In SIlico Fingerprinting) program is freely available at <url>http://www-leca.ujf-grenoble.fr/logiciels.htm</url>.</p

    Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes

    Get PDF
    BACKGROUND: Transposons, i.e. transposable elements (TEs), are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search. RESULTS: Twelve novel transposons, including LINEs (long interspersed nuclear elements), SINEs (short interspersed nuclear elements), MITEs (miniature inverted-repeat transposable elements), one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the 5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes. In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9, CYP6G1, CYP6W1, CYP12A4, CYP12D1) implicated in insecticide resistance are associated with a variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1, CYP314A1 and CYP315A1) involved in ecdysone biosynthesis and developmental regulation are free of TE insertions. CONCLUSION: These results indicate that TEs are selectively retained within or in close proximity to xenobiotic-metabolizing P450 genes

    Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Horizontal transfers (HTs) refer to the transmission of genetic material between phylogenetically distant species. Although most of the cases of HTs described so far concern genes, there is increasing evidence that some involve transposable elements (TEs) in Eukaryotes. The availability of the full genome sequence of two cereal species, (<it>i.e</it>. rice and <it>Sorghum</it>), as well as the partial genome sequence of maize, provides the opportunity to carry out genome-wide searches for TE-HTs in <it>Poaceae</it>.</p> <p>Results</p> <p>We have identified an LTR-retrotransposon, that we named <it>Route66</it>, with more than 95% sequence identity between rice and <it>Sorghum</it>. Using a combination of <it>in silico </it>and molecular approaches, we are able to present a substantial phylogenetic evidence that <it>Route66 </it>has been transferred horizontally between Panicoideae and several species of the genus <it>Oryza</it>. In addition, we show that it has remained active after these transfers.</p> <p>Conclusion</p> <p>This study constitutes a new case of HTs for an LTR-retrotransposon and we strongly believe that this mechanism could play a major role in the life cycle of transposable elements. We therefore propose to integrate classe I elements into the previous model of transposable element evolution through horizontal transfers.</p

    How many antiviral small interfering RNAs may be encoded by the mammalian genomes?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discovery of RNA interference phenomenon (RNAi) and understanding of its mechanisms has revolutionized our views on many molecular processes in the living cell. Among the other, RNAi is involved in silencing of transposable elements and in inhibition of virus infection in various eukaryotic organisms. Recent experimental studies demonstrate few cases of viral replication suppression via complementary interactions between the mammalian small RNAs and viral transcripts.</p> <p>Presentation of the hypothesis</p> <p>It was found that >50% of the human genome is transcribed in different cell types and that these transcripts are mainly not associated with known protein coding genes, but represent non-coding RNAs of unknown functions. We propose a hypothesis that mammalian DNAs encode thousands RNA motifs that may serve for antiviral protection. We also presume that the evolutional success of some groups of genomic repeats and, in particular, of transposable elements (TEs) may be due to their ability to provide antiviral RNA motifs to the host organism. Intense genomic repeat propagation into the genome would inevitably cause bidirectional transcription of these sequences, and the resulting double-stranded RNAs may be recognized and processed by the RNA interference enzymatic machinery. Provided that these processed target motifs may be complementary to viral transcripts, fixation of the repeats into the host genome may be of a considerable benefit to the host. It fits with our bioinformatical data revealing thousands of 21-28 bp long motifs identical between human DNA and human-pathogenic adenoviral and herpesviral genomes. Many of these motifs are transcribed in human cells, and the transcribed part grows proportionally to their lengths. Many such motifs are included in human TEs. For example, one 23 nt-long motif that is a part of human abundant Alu retrotransposon, shares sequence identity with eight human adenoviral genomes.</p> <p>Testing the hypothesis</p> <p>This hypothesis could be tested on various mammalian species and viruses infecting mammalian cells.</p> <p>Implications of the hypothesis</p> <p>This hypothesis proposes that mammalian organisms may use their own genomes as sources of thousands of putative interfering RNA motifs that can be recruited to repress intracellular pathogens like proliferating viruses.</p> <p>Reviewers</p> <p>This article was reviewed by Eugene V. Koonin, Valerian V. Dolja and Yuri V. Shpakovski.</p

    Nuclear Importation of Mariner Transposases among Eukaryotes: Motif Requirements and Homo-Protein Interactions

    Get PDF
    Mariner-like elements (MLEs) are widespread transposable elements in animal genomes. They have been divided into at least five sub-families with differing host ranges. We investigated whether the ability of transposases encoded by Mos1, Himar1 and Mcmar1 to be actively imported into nuclei varies between host belonging to different eukaryotic taxa. Our findings demonstrate that nuclear importation could restrict the host range of some MLEs in certain eukaryotic lineages, depending on their expression level. We then focused on the nuclear localization signal (NLS) in these proteins, and showed that the first 175 N-terminal residues in the three transposases were required for nuclear importation. We found that two components are involved in the nuclear importation of the Mos1 transposase: an SV40 NLS-like motif (position: aa 168 to 174), and a dimerization sub-domain located within the first 80 residues. Sequence analyses revealed that the dimerization moiety is conserved among MLE transposases, but the Himar1 and Mcmar1 transposases do not contain any conserved NLS motif. This suggests that other NLS-like motifs must intervene in these proteins. Finally, we showed that the over-expression of the Mos1 transposase prevents its nuclear importation in HeLa cells, due to the assembly of transposase aggregates in the cytoplasm
    corecore