61 research outputs found

    Plasmodium Purine Metabolism and Its Inhibition by Nucleoside and Nucleotide Analogues

    Get PDF
    International audienceMalaria still affects around 200 million people and is responsible for more than 400,000 deaths per year, mostly children in subequatorial areas. This disease is caused by parasites of the Plasmodium genus. Only a few WHO-recommended treatments are available to prevent or cure plasmodial infections, but genetic mutations in the causal parasites have led to onset of resistance against all commercial antimalarial drugs. New drugs and targets are being investigated to cope with this emerging problem, including enzymes belonging to the main metabolic pathways, while nucleoside and nucleotide analogues are also a promising class of potential drugs. This review highlights the main metabolic pathways targeted for the development of potential antiplasmodial therapies based on nucleos(t)ide analogues, as well as the different series of purine-containing nucleoside and nucleotide derivatives designed to inhibit Plasmodium falciparum purine metabolism.

    Novel purine chemotypes with activity against Plasmodium 2 falciparum and Trypanosoma cruzi

    Get PDF
    Malaria and Chagas disease, caused by Plasmodium spp. and Trypanosoma cruzi parasites, remain important global health problems. Available treatments for those diseases present several limitations, such as lack of efficacy, toxic side effects, and drug resistance. Thus, new drugs are urgently needed. The discovery of new drugs may be benefited by considering the significant biological differences between hosts and parasites. One of the most striking differences is found in the purine metabolism, because most of the parasites are incapable of de novo purine biosynthesis. Herein, we have analyzed the in vitro anti-P. falciparum and anti-T. cruzi activity of a collection of 81 purine derivatives and pyrimidine analogs. We firstly used a primary screening at three fixed concentrations (100, 10, and 1 µM) and progressed those compounds that kept the growth of the parasites < 30% at 100 µM to dose–response assays. Then, we performed two different cytotoxicity assays on Vero cells and human HepG2 cells. Finally, compounds specifically active against T. cruzi were tested against intracellular amastigote forms. Purines 33 (IC50 = 19.19 µM) and 76 (IC50 = 18.27 µM) were the most potent against P. falciparum. On the other hand, 6D (IC50 = 3.78 µM) and 34 (IC50 = 4.24 µM) were identified as hit purines against T. cruzi amastigotes. Moreover, an in silico docking study revealed that P. falciparum and T. cruzi hypoxanthine guanine phosphoribosyltransferase enzymes could be the potential targets of those compounds. Our study identified two novel, purine-based chemotypes that could be further optimized to generate potent and diversified anti-parasitic drugs against both parasites.SAF2016-76080-R (Spanish Ministry of Economy (AEI/FEDER, UE))PID2019-110810RB-I00 (Spanish Ministry of Science and Innovation)Generalitat of Catalonia Universities and Research Department, Spain (AGAUR; 2017SGR00924)Carlos III Health Institute (ISCIII)RICET Network for Cooperative Research in Tropical Diseases (ISCIII; RD12/0018/0010)Generalitat of Catalonia Department of Health (PERIS 2016–2010 SLT008/18/00132)Spanish Ministry of Education, Culture, and Sports (FPU grant ref. 14/00818)Spanish Ministry of Science, Innovation, and Universities through the “Centro de Excelencia Severo Ochoa 2019–2023” Program (CEX2018-000806-S)CERCA Progra

    Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?

    Get PDF
    The organization and mining of malaria genomic and post-genomic data is highly motivated by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should therefore be as reliable and versatile as possible. In this context, we examined five aspects of the organization and mining of malaria genomic and post-genomic data: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Progresses toward a grid-enabled chemogenomic knowledge space are discussed.Comment: 43 pages, 4 figures, to appear in Malaria Journa

    Potential repurposing of four FDA approved compounds with antiplasmodial activity identified through proteome scale computational drug discovery and in vitro assay

    Get PDF
    Malaria elimination can benefit from time and cost-efficient approaches for antimalarials such as drug repurposing. In this work, 796 DrugBank compounds were screened against 36 Plasmodium falciparum targets using QuickVina-W. Hits were selected after rescoring using GRaph Interaction Matching (GRIM) and ligand efficiency metrics: surface efficiency index (SEI), binding efficiency index (BEI) and lipophilic efficiency (LipE). They were further evaluated in Molecular dynamics (MD). Twenty-five protein–ligand complexes were finally retained from the 28,656 (36×796) dockings

    Integrating protein annotations for the in silico prioritization of putative drug target proteins in malaria

    Get PDF
    Current anti-malarial methods have been effective in reducing the number of malarial cases. However, these methods do not completely block the transmission of the parasite. Research has shown that repeated use of the current anti-malarial drugs, which include artemisinin-based drug combinations, might be toxic to humans. There have also been reports of an emergence of artemisinin-resistant parasites. Finding anti-malarial drugs through the drug discovery process takes a long time and failure results in a great financial loss. The failure of drug discovery projects can be partly attributed to the improper selection of drug targets. There is thus a need for an eff ective way of identifying and validating new potential malaria drug targets for entry into the drug discovery process. The availability of the genome sequences for the Plasmodium parasite, human host and the Anopheles mosquito vector has facilitated post-genomic studies on malaria. Proper utilizationof this data, in combination with computational biology and bioinformatics techniques, could aid in the in silico prioritization of drug targets. This study was aimed at extensively annotating the protein sequences from the Plasmodium parasites, H. sapiens and A. gambiae with data from di fferent online databases in order to create a resource for the prioritization of drug targets in malaria. Essentiality, assay feasibility, resistance, toxicity, structural information and druggability were the main target selection criteria which were used to collect data for protein annotations. The data was used to populate the Discovery resource (http://malport. bi.up.ac.za/) for the in silico prioritization of potential drug targets. A new version of the Discovery system, Discovery 2.0 (http://discovery.bi.up.ac.za/), has been developed using Java. The system contains new and automatically updated data as well as improved functionalities. The new data in Discovery 2.0 includes UniProt accessions, gene ontology annotations from the UniProt-GOA project, pathways from Reactome and Malaria Parasite Metabolic Pathways databases, protein-protein interactions data from. IntAct as well as druggability data from the DrugEBIlity resource hosted by ChEMBL. Users can access the data by searching with a protein identi er, UniProt accession, protein name or through the advanced search which lets users filter protein sequences based on different protein properties. The results are organized in a tabbed environment, with each tab displaying different protein annotation data. A sample investigation using a previously proposed malarial target, S-adenosyl-Lhomocysteine hydrolase, was carried out to demonstrate the diff erent categories of data available in Discovery 2.0 as well as to test if the available data is su fficient for assessment and prioritization of drug targets. The study showed that using the annotation data in Discovery 2.0, a protein can be assessed, in a species comparative manner, on the potential of being a drug target based on the selection criteria mentioned here. However, supporting data from literature is also needed to further validate the findings.Dissertation (MSc)--University of Pretoria, 2012.Biochemistryunrestricte

    The Regulation of Plasmodium falciparum Metabolism by Haloacid Dehalogenase Proteins

    Get PDF
    Malaria is an enormous financial and public health burden for much of the world, infecting over 200 million and killing over 400,000 people every year. While much progress has been made combating malaria in the past few decades, those advances have slowed in recent years, partially due to the emergence of resistance to all known antimalarials used to date. To achieve the goal of eliminating malaria as a major global health problem, new therapeutics need to be developed, targeting novel categories of parasite biology. One poorly understood area of parasite biology is the regulation of various metabolic pathways. We have recently identified a superfamily of proteins, named haloacid dehalogenase (HAD) proteins, that are implicated in resistance to metabolic inhibitors and regulation of essential metabolic pathways in Plasmodium falciparum malaria parasites. Here, we investigate how HAD2 (PF3D7_1226300) regulates metabolism of the isoprenoid biosynthesis pathway, using biochemical, metabolomic, and genetic tools. We find that HAD2 is a phosphatase with a preference for triose phosphates. We then investigate the related HAD proteins—HAD4 (PF3D7_1118400), Lipin (PF3D7_0303200), and HAD5 (PF53D7_1017400)—for their roles in regulating parasite metabolism and the implications for future drug design. We find that HAD4 and Lipin are dispensable for growth in asexual malaria parasites. Lipin disruption causes significant growth reduction and accumulation of lipid species, while HAD4 is a dispensable nucleotide phosphatase. We also find that HAD5 is a phosphomannomutase that is essential for parasite egress and invasion. We solve the three-dimensional crystal structure of HAD5 and demonstrate our ability to selectively inhibit it compared to human phosphomannomutases. All of these findings add to our understanding of metabolic regulation in malaria parasites, illuminating key ways that targeting different metabolic pathways could work synergistically in development of novel antimalarial therapeutic strategies

    Purification and characterisation of plasmodium falciparum Hypoxanthine phosphoribosyltransferase

    Get PDF
    Magister Scientiae - MScMalaria remains the most important parasitic disease worldwide. It is estimated that over 500 million infections and more that 2.7 million deaths arising from malaria occur each year. Most (90%) of the infections occur in Africa with the most affected groups being children of less than five years of age and women. this dire situation is exacerbated by the emrggence of drug resistant strains of Plasmodium falciparum. The work reported in this thesis focuses on improving the purification of PfHPRT by investigating the characteristics of anion exchange DE-52 chromatography (the first stage of purification), developing an HPLC gel filtration method for examining the quaternary structure of the protein and possible end stage purification, and initialcrystalization trials. a homology model of the open, unligaded PfHPRT is constructed using the atoomic structures of human, T.ccruz and STryphimurium HPRT as templates.South Afric

    Application of computer-aided drug design for identification of P. falciparum inhibitors

    Get PDF
    Malaria is a millennia-old disease with the first recorded cases dating back to 2700 BC found in Chinese medical records, and later in other civilizations. It has claimed human lives to such an extent that there are a notable associated socio-economic consequences. Currently, according to the World Health Organization (WHO), Africa holds the highest disease burden with 94% of deaths and 82% of cases with P. falciparum having ~100% prevalence. Chemotherapy, such as artemisinin combination therapy, has been and continues to be the work horse in the fight against the disease, together with seasonal malaria chemoprevention and the use of insecticides. Natural products such as quinine and artemisinin are particularly important in terms of their antimalarial activity. The emphasis in current chemotherapy research is the need for time and cost-effective workflows focussed on new mechanisms of action (MoAs) covering the target candidate profiles (TCPs). Despite a decline in cases over the past decades with, countries increasingly becoming certified malaria free, a stalling trend has been observed in the past five years resulting in missing the 2020 Global Technical Strategy (GTS) milestones. With no effective vaccine, a reduction in funding, slower drug approval than resistance emergence from resistant and invasive vectors, and threats in diagnosis with the pfhrp2/3 gene deletion, malaria remains a major health concern. Motivated by these reasons, the primary aim of this work was a contribution to the antimalarial pipeline through in silico approaches focusing on P. falciparum. We first intended an exploration of malarial targets through a proteome scale screening on 36 targets using multiple metrics to account for the multi-objective nature of drug discovery. The continuous growth of structural data offers the ideal scenario for mining new MoAs covering antimalarials TCPs. This was combined with a repurposing strategy using a set of orally available FDA approved drugs. Further, use was made of time- and cost-effective strategies combining QVina-W efficiency metrics that integrate molecular properties, GRIM rescoring for molecular interactions and a hydrogen mass repartitioning (HMR) molecular dynamics (MD) scheme for accelerated development of antimalarials in the context of resistance. This pipeline further integrates a complex ranking for better drug-target selectivity, and normalization strategies to overcome docking scoring function bias. The different metrics, ranking, normalization strategies and their combinations were first assessed using their mean ranking error (MRE). A version combining all metrics was used to select 36 unique protein-ligand complexes, assessed in MD, with the final retention of 25. From the 16 in vitro tested hits of the 25, fingolimod, abiraterone, prazosin, and terazosin showed antiplasmodial activity with IC50 2.21, 3.37, 16.67 and 34.72 μM respectively and of these, only fingolimod was found to be not safe with respect to human cell viability. These compounds were predicted active on different molecular targets, abiraterone was predicted to interact with a putative liver-stage essential target, hence promising as a transmission-blocking agent. The pipeline had a promising 25% hit rate considering the proteome-scale and use of cost-effective approaches. Secondly, we focused on Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) using a more extensive screening pipeline to overcome some of the current in silico screening limitations. Starting from the ZINC lead-like library of ~3M, hierarchical ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS) approaches with molecular docking and re-scoring using eleven scoring functions (SFs) were used. Later ranking with an exponential consensus strategy was included. Selected hits were further assessed through Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA), advanced MD sampling in a ligand pulling simulations and (Weighted Histogram Analysis Method) WHAM analysis for umbrella sampling (US) to derive binding free energies. Four leads had better predicted affinities in US than LC5, a 280 nM potent PfDXR inhibitor with ZINC000050633276 showing a promising binding of -20.43 kcal/mol. As shown with fosmidomycin, DXR inhibition offers fast acting compounds fulfilling antimalarials TCP1. Yet, fosmidomycin has a high polarity causing its short half-life and hampering its clinical use. These leads scaffolds are different from fosmidomycin and hence may offer better pharmacokinetic and pharmacodynamic properties and may also be promising for lead optimization. A combined analysis of residues’ contributions to the free energy of binding in MM-PBSA and to steered molecular dynamics (SMD) Fmax indicated GLU233, CYS268, SER270, TRP296, and HIS341 as exploitable for compound optimization. Finally, we updated the SANCDB library with new NPs and their commercially available analogs as a solution to NP availability. The library is extended to 1005 compounds from its initial 600 compounds and the database is integrated to Mcule and Molport APIs for analogs automatic update. The new set may contribute to virtual screening and to antimalarials as the most effective ones have NP origin.Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 202

    Computational Deorphaning of <em>Mycobacterium tuberculosis</em> Targets

    Get PDF
    Tuberculosis (TB) continues to be a major health hazard worldwide due to the resurgence of drug discovery strains of Mycobacterium tuberculosis (Mtb) and co-infection. For decades drug discovery has concentrated on identifying ligands for ~10 Mtb targets, hence most of the identified essential proteins are not utilised in TB chemotherapy. Here computational techniques were used to identify ligands for the orphan Mtb proteins. These range from ligand-based and structure-based virtual screening modelling the proteome of the bacterium. Identification of ligands for most of the Mtb proteins will provide novel TB drugs and targets and hence address drug resistance, toxicity and the duration of TB treatment
    corecore