1,963 research outputs found

    Deteção de patologia cardíaca usando machine learning

    Get PDF
    Segundo a Organização Mundial da Saúde, as doenças cardiovasculares (DCV) representam 32% do número de mortes no mundo. A redução deste valor pode ser atingida através da deteção precoce que pode levar a um tratamento mais preciso, melhorando a expectativa de vida do paciente. A ausculta cardíaca é a principal técnica utilizada pelos profissionais de saúde para identificar muitas DCV. No entanto, a auscultação dos sons cardíacos é um procedimento difícil, já que muitos sons são fracos e difíceis de detetar, sendo necessário um processo de treino contínuo. Os estetoscópios modernos podem amplificar os sons cardíacos, reduzir o ruído de ambiente, melhorar a percepção do usuário e, mais importante, converter um sinal acústico em digital. Isto permitiu o desenvolvimento de sistemas de decisão assistidos por computador baseados na auscultação. Este documento apresenta uma metodologia que pode detectar automaticamente a existência de DCV através de sons cardíacos obtidos de diferentes partes do coração. Diversas tecnologias foram analisadas, assim como projetos que tentam resolver parte do problema em questão e a partir deles, três alternativas diferentes foram elaboradas e documentadas, assim como a divisão do dataset e métricas a serem usadas nos testes. Essas alternativas visam classificar anomalias na auscultação cardíaca dos pacientes. Vários modelos das duas primeiras alternativas foram implementados e seus resultados apresentados. Também é feita uma comparação entre as experiências desenvolvidas entre si, também com experiências básicas que não utilizam mecanismos inteligentes e com outros trabalhos que tenham o mesmo objetivo. O melhor resultado obtido foi pela primeira abordagem com uma exatidão de 94%, precisão de 81% e recall de 67%.According to World Health Organization, the cardiovascular diseases (CVD) represent 32% of the number of deaths worldwide. Early detection leads to a more accurate treatment plan and improves the patient’s life expectancy. Cardiac auscultation is the main technique used by health professionals to identify many CVD. Nevertheless, heart sound auscultation is a difficult procedure, since it requires continuous training and many heart sounds are faint and hard to detect. However, modern stethoscopes can amplify heart sounds, reduce the environment noise, improve the user’s perception and, more importantly, convert an acoustic signal to a digital one. This allowed, the development of computer assisted decision systems based on auscultation. This document presents a methodology that can automatically detect the existence of CVD through cardiac sounds obtained from different parts of the heart. Several technologies were analysed, as well as projects that try to solve part of the problem in question and from them, three different alternatives were elaborated and documented, as well as the division of test data and the metrics for their evaluation. These alternatives are intended to classify anomalies in patients' cardiac auscultation. Several models of the first two alternatives were implemented and their results presented. A comparison is also made between the experiences developed among themselves, also with basic experiments that do not use intelligent mechanisms and with other works that have the same objective. The best result obtained was by the first approach with an accuracy of 94%, precision of 81% and recall of 67%

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Automatic analysis and classification of cardiac acoustic signals for long term monitoring

    Get PDF
    Objective: Cardiovascular diseases are the leading cause of death worldwide resulting in over 17.9 million deaths each year. Most of these diseases are preventable and treatable, but their progression and outcomes are significantly more positive with early-stage diagnosis and proper disease management. Among the approaches available to assist with the task of early-stage diagnosis and management of cardiac conditions, automatic analysis of auscultatory recordings is one of the most promising ones, since it could be particularly suitable for ambulatory/wearable monitoring. Thus, proper investigation of abnormalities present in cardiac acoustic signals can provide vital clinical information to assist long term monitoring. Cardiac acoustic signals, however, are very susceptible to noise and artifacts, and their characteristics vary largely with the recording conditions which makes the analysis challenging. Additionally, there are challenges in the steps used for automatic analysis and classification of cardiac acoustic signals. Broadly, these steps are the segmentation, feature extraction and subsequent classification of recorded signals using selected features. This thesis presents approaches using novel features with the aim to assist the automatic early-stage detection of cardiovascular diseases with improved performance, using cardiac acoustic signals collected in real-world conditions. Methods: Cardiac auscultatory recordings were studied to identify potential features to help in the classification of recordings from subjects with and without cardiac diseases. The diseases considered in this study for the identification of the symptoms and characteristics are the valvular heart diseases due to stenosis and regurgitation, atrial fibrillation, and splitting of fundamental heart sounds leading to additional lub/dub sounds in the systole or diastole interval of a cardiac cycle. The localisation of cardiac sounds of interest was performed using an adaptive wavelet-based filtering in combination with the Shannon energy envelope and prior information of fundamental heart sounds. This is a prerequisite step for the feature extraction and subsequent classification of recordings, leading to a more precise diagnosis. Localised segments of S1 and S2 sounds, and artifacts, were used to extract a set of perceptual and statistical features using wavelet transform, homomorphic filtering, Hilbert transform and mel-scale filtering, which were then fed to train an ensemble classifier to interpret S1 and S2 sounds. Once sound peaks of interest were identified, features extracted from these peaks, together with the features used for the identification of S1 and S2 sounds, were used to develop an algorithm to classify recorded signals. Overall, 99 features were extracted and statistically analysed using neighborhood component analysis (NCA) to identify the features which showed the greatest ability in classifying recordings. Selected features were then fed to train an ensemble classifier to classify abnormal recordings, and hyperparameters were optimized to evaluate the performance of the trained classifier. Thus, a machine learning-based approach for the automatic identification and classification of S1 and S2, and normal and abnormal recordings, in real-world noisy recordings using a novel feature set is presented. The validity of the proposed algorithm was tested using acoustic signals recorded in real-world, non-controlled environments at four auscultation sites (aortic valve, tricuspid valve, mitral valve, and pulmonary valve), from the subjects with and without cardiac diseases; together with recordings from the three large public databases. The performance metrics of the methodology in relation to classification accuracy (CA), sensitivity (SE), precision (P+), and F1 score, were evaluated. Results: This thesis proposes four different algorithms to automatically classify fundamental heart sounds – S1 and S2; normal fundamental sounds and abnormal additional lub/dub sounds recordings; normal and abnormal recordings; and recordings with heart valve disorders, namely the mitral stenosis (MS), mitral regurgitation (MR), mitral valve prolapse (MVP), aortic stenosis (AS) and murmurs, using cardiac acoustic signals. The results obtained from these algorithms were as follows: • The algorithm to classify S1 and S2 sounds achieved an average SE of 91.59% and 89.78%, and F1 score of 90.65% and 89.42%, in classifying S1 and S2, respectively. 87 features were extracted and statistically studied to identify the top 14 features which showed the best capabilities in classifying S1 and S2, and artifacts. The analysis showed that the most relevant features were those extracted using Maximum Overlap Discrete Wavelet Transform (MODWT) and Hilbert transform. • The algorithm to classify normal fundamental heart sounds and abnormal additional lub/dub sounds in the systole or diastole intervals of a cardiac cycle, achieved an average SE of 89.15%, P+ of 89.71%, F1 of 89.41%, and CA of 95.11% using the test dataset from the PASCAL database. The top 10 features that achieved the highest weights in classifying these recordings were also identified. • Normal and abnormal classification of recordings using the proposed algorithm achieved a mean CA of 94.172%, and SE of 92.38%, in classifying recordings from the different databases. Among the top 10 acoustic features identified, the deterministic energy of the sound peaks of interest and the instantaneous frequency extracted using the Hilbert Huang-transform, achieved the highest weights. • The machine learning-based approach proposed to classify recordings of heart valve disorders (AS, MS, MR, and MVP) achieved an average CA of 98.26% and SE of 95.83%. 99 acoustic features were extracted and their abilities to differentiate these abnormalities were examined using weights obtained from the neighborhood component analysis (NCA). The top 10 features which showed the greatest abilities in classifying these abnormalities using recordings from the different databases were also identified. The achieved results demonstrate the ability of the algorithms to automatically identify and classify cardiac sounds. This work provides the basis for measurements of many useful clinical attributes of cardiac acoustic signals and can potentially help in monitoring the overall cardiac health for longer duration. The work presented in this thesis is the first-of-its-kind to validate the results using both, normal and pathological cardiac acoustic signals, recorded for a long continuous duration of 5 minutes at four different auscultation sites in non-controlled real-world conditions.Open Acces

    A survey on artificial intelligence-based acoustic source identification

    Get PDF
    The concept of Acoustic Source Identification (ASI), which refers to the process of identifying noise sources has attracted increasing attention in recent years. The ASI technology can be used for surveillance, monitoring, and maintenance applications in a wide range of sectors, such as defence, manufacturing, healthcare, and agriculture. Acoustic signature analysis and pattern recognition remain the core technologies for noise source identification. Manual identification of acoustic signatures, however, has become increasingly challenging as dataset sizes grow. As a result, the use of Artificial Intelligence (AI) techniques for identifying noise sources has become increasingly relevant and useful. In this paper, we provide a comprehensive review of AI-based acoustic source identification techniques. We analyze the strengths and weaknesses of AI-based ASI processes and associated methods proposed by researchers in the literature. Additionally, we did a detailed survey of ASI applications in machinery, underwater applications, environment/event source recognition, healthcare, and other fields. We also highlight relevant research directions

    Respiratory Sound Analysis for the Evidence of Lung Health

    Get PDF
    Significant changes have been made on audio-based technologies over years in several different fields along with healthcare industry. Analysis of Lung sounds is a potential source of noninvasive, quantitative information along with additional objective on the status of the pulmonary system. To do that medical professionals listen to sounds heard over the chest wall at different positions with a stethoscope which is known as auscultation and is important in diagnosing respiratory diseases. At times, possibility of inaccurate interpretation of respiratory sounds happens because of clinician’s lack of considerable expertise or sometimes trainees such as interns and residents misidentify respiratory sounds. We have built a tool to distinguish healthy respiratory sound from non-healthy ones that come from respiratory infection carrying patients. The audio clips were characterized using Linear Predictive Cepstral Coefficient (LPCC)-based features and the highest possible accuracy of 99.22% was obtained with a Multi-Layer Perceptron (MLP)- based classifier on the publicly available ICBHI17 respiratory sounds dataset [1] of size 6800+ clips. The system also outperformed established works in literature and other machine learning techniques. In future we will try to use larger dataset with other acoustic techniques along with deep learning-based approaches and try to identify the nature and severity of infection using respiratory sounds

    NRC-Net: Automated noise robust cardio net for detecting valvular cardiac diseases using optimum transformation method with heart sound signals

    Full text link
    Cardiovascular diseases (CVDs) can be effectively treated when detected early, reducing mortality rates significantly. Traditionally, phonocardiogram (PCG) signals have been utilized for detecting cardiovascular disease due to their cost-effectiveness and simplicity. Nevertheless, various environmental and physiological noises frequently affect the PCG signals, compromising their essential distinctive characteristics. The prevalence of this issue in overcrowded and resource-constrained hospitals can compromise the accuracy of medical diagnoses. Therefore, this study aims to discover the optimal transformation method for detecting CVDs using noisy heart sound signals and propose a noise robust network to improve the CVDs classification performance.For the identification of the optimal transformation method for noisy heart sound data mel-frequency cepstral coefficients (MFCCs), short-time Fourier transform (STFT), constant-Q nonstationary Gabor transform (CQT) and continuous wavelet transform (CWT) has been used with VGG16. Furthermore, we propose a novel convolutional recurrent neural network (CRNN) architecture called noise robust cardio net (NRC-Net), which is a lightweight model to classify mitral regurgitation, aortic stenosis, mitral stenosis, mitral valve prolapse, and normal heart sounds using PCG signals contaminated with respiratory and random noises. An attention block is included to extract important temporal and spatial features from the noisy corrupted heart sound.The results of this study indicate that,CWT is the optimal transformation method for noisy heart sound signals. When evaluated on the GitHub heart sound dataset, CWT demonstrates an accuracy of 95.69% for VGG16, which is 1.95% better than the second-best CQT transformation technique. Moreover, our proposed NRC-Net with CWT obtained an accuracy of 97.4%, which is 1.71% higher than the VGG16
    • …
    corecore