1,317 research outputs found
Recommended from our members
Photochemically Induced Phase Change in Monolayer Molybdenum Disulfide.
Monolayer transition metal dichalcogenide (TMDs) are promising candidates for two-dimensional (2D) ultrathin, flexible, low-power, and transparent electronics and optoelectronics. However, the performance of TMD-based devices is still limited by the relatively low carrier mobility and the large contact resistance between the semiconducting 2D channel material and the contact metal electrodes. Phase-engineering in monolayer TMDs showed great promise in enabling the fabrication of high-quality hetero-phase structures with controlled carrier mobilities and heterojunction materials with reduced contact resistance. However, to date, general methods to induce phase-change in monolayer TMDs either employ highly-hostile organometallic compounds, or have limited compatibility with large-scale, cost-effective device fabrication. In this paper, we report a new photochemical method to induce semiconductor to metallic phase transition in monolayer MoS2 in a benign chemical environment, through a bench-top, cost-effective solution phase process that is compatible with large-scale device fabrication. It was demonstrated that photoelectrons produced by the band-gap absorption of monolayer MoS2 have enough chemical potential to activate the phase transition in the presence of an electron-donating solvent. This novel photochemical phase-transition mechanism advances our fundamental understanding of the phase transformation in 2D transition metal dichalcogenides (TMDs), and will open new revenues in the fabrication of atomically-thick metal-semiconductor heterostructures for improved carrier mobility and reduced contact resistance in TMD-based electronic and optoelectronic devices
Investigating laser induced phase engineering in MoS2 transistors
Phase engineering of MoS2 transistors has recently been demonstrated and has
led to record low contact resistances. The phase patterning of MoS2 flakes with
laser radiation has also been realized via spectroscopic methods, which invites
the potential of controlling the metallic and semiconducting phases of MoS2
transistors by simple light exposure. Nevertheless, the fabrication and
demonstration of laser patterned MoS2 devices starting from the metallic
polymorph has not been demonstrated yet. Here, we study the effects of laser
radiation on 1T/1T'-MoS2 transistors with the prospect of driving an in-situ
phase transition to the 2H-polymorph through light exposure. We find that
although the Raman peaks of 2H-MoS2 become more prominent and the ones from the
1T/1T' phase fade after the laser exposure, the semiconducting properties of
the laser patterned devices are not fully restored and the laser treatment
ultimately leads to degradation of the transport channel
Exfoliation solvent dependent plasmon resonances in two-dimensional sub-stoichiometric molybdenum oxide nanoflakes
Few-layer two-dimensional (2D) molybdenum oxide nanoflakes are exfoliated using a grinding assisted liquid phase sonication exfoliation method. The sonication process is carried out in five different mixtures of water with both aprotic and protic solvents. We found that surface energy and solubility of mixtures play important roles in changing the thickness, lateral dimension, and synthetic yield of the nanoflakes. We demonstrate an increase in proton intercalation in 2D nanoflakes upon simulated solar light exposure. This results in substoichiometric flakes and a subsequent enhancement in free electron concentrations, producing plasmon resonances. Two plasmon resonance peaks associated with the thickness and the lateral dimension axes are observable in the samples, in which the plasmonic peak positions could be tuned by the choice of the solvent in exfoliating 2D molybdenum oxide. The extinction coefficients of the plasmonic absorption bands of 2D molybdenum oxide nanoflakes in all samples are found to be high (Îμ > 109 L mol-1 cm-1). It is expected that the tunable plasmon resonances of 2D molybdenum oxide nanoflakes presented in this work can be used in future electronic, optical, and sensing devices
Atomically Thin Resonant Tunnel Diodes built from Synthetic van der Waals Heterostructures
Vertical integration of two-dimensional van der Waals materials is predicted
to lead to novel electronic and optical properties not found in the constituent
layers. Here, we present the direct synthesis of two unique, atomically thin,
multi-junction heterostructures by combining graphene with the monolayer
transition-metal dichalocogenides: MoS2, MoSe2, and WSe2.The realization of
MoS2-WSe2-Graphene and WSe2-MoSe2-Graphene heterostructures leads toresonant
tunneling in an atomically thin stack with spectrally narrow room temperature
negative differential resistance characteristics
Electrochemical and photoelectrochemical properties of nickel oxide (NiO) with nanostructured morphology for photoconversion applications
The cost-effective production of chemicals in electrolytic cells and the conversion of the radiation energy into electrical energy in photoelectrochemical cells (PECs) require the use of electrodes with large surface area, which possess either electrocatalytic or photoelectrocatalytic properties. In this context nanostructured semiconductors are electrodic materials of great relevance because of the possibility of varying their photoelectrocatalytic properties in a controlled fashion via doping, dye-sensitization or modification of the conditions of deposition. Among semiconductors for electrolysers and PECs the class of the transition metal oxides (TMOs) with a particular focus on NiO interests for the chemical-physical inertness in ambient conditions and the intrinsic electroactivity in the solid state. The latter aspect implies the existence of capacitive properties in TMO and NiO electrodes which thus act as charge storage systems. After a comparative analysis of the (photo)electrochemical properties of nanostructured TMO electrodes in the configuration of thin film the use of NiO and analogs for the specific applications of water photoelectrolysis and, secondly, photoelectrochemical conversion of carbon dioxide will be discussed. © 2018 Bonomo, Dini and Decker
- …
