1,153 research outputs found

    In Situ Method of Measuring Atmosphere Neutral Winds with a Rigid Falling Sphere

    Get PDF
    The new falling sphere instruments will measure lower E-region winds and density, which are critical for many of the electrodynamics and plasma physics studies that are carried out as part of the NASA suborbital rocket program. The new falling sphere design will take advantage of modern commercially available electronic components and materials. Of primary importance, it is proposed to fly an in-situ instrument that targets the measurement of neutral wind profiles over the altitude range from 80 to 150 km, with accuracy better than that achieved in previous implementations of the falling sphere technique and those typically obtained with the chemical release technique. The falling sphere instrument will measure the lower E-region winds and density, which are critical for many of the electrodynamics and plasma physics studies that are carried out as part of the NASA Geospace suborbital rocket program. This gives a report of the overall design and the rigid body dynamics involved as well as some post flight analysis

    Improving Dynamics Estimations and Low Level Torque Control Through Inertial Sensing

    Get PDF
    In 1996, professors J. Edward Colgate and Michael Peshkin invented the cobots as robotic equipment safe enough for interacting with human workers. Twenty years later, collaborative robots are highly demanded in the packaging industry, and have already been massively adopted by companies facing issues for meeting customer demands. Meantime, cobots are still making they way into environments where value-added tasks require more complex interactions between robots and human operators. For other applications like a rescue mission in a disaster scenario, robots have to deal with highly dynamic environments and uneven terrains. All these applications require robust, fine and fast control of the interaction forces, specially in the case of locomotion on uneven terrains in an environment where unexpected events can occur. Such interaction forces can only be modulated through the control of joint internal torques in the case of under-actuated systems which is typically the case of mobile robots. For that purpose, an efficient low level joint torque control is one of the critical requirements, and motivated the research presented here. This thesis addresses a thorough model analysis of a typical low level joint actuation sub-system, powered by a Brushless DC motor and suitable for torque control. It then proposes procedure improvements in the identification of model parameters, particularly challenging in the case of coupled joints, in view of improving their control. Along with these procedures, it proposes novel methods for the calibration of inertial sensors, as well as the use of such sensors in the estimation of joint torques

    Development of a sensor for microvibrations measurement in the AlbaSat CubeSat mission

    Get PDF
    openMicrovibrations on spacecraft represent an issue for payloads requiring high pointing accuracy and/or stability over time, and they might represent a particular concern for CubeSats and small satellites that, usually, are not equipped with very-high performance attitude control systems. Hence, collecting reliable measures of the vibration spectra during the operations of a CubeSat represents a significant research activity. This thesis presents the development of a sensor, configured as a payload within the AlbaSat mission, capable of accurately measuring the microvibrations in space, with particular focus on those produced by the Momentum Exchange Devices (MED), i.e., Reaction or Momentum Wheels, that represent one of the most important microvibrations sources. The thesis takes place in the framework of the AlbaSat mission. AlbaSat is a 2U CubeSat developed by a student team of the University of Padova under the “Fly Your Satellite! – Design Booster” programme promoted by the European Space Agency (ESA). The mission has four different objectives: (1) to collect measurements of the space debris environment in-situ, (2) to measure the microvibrations on board the CubeSat, (3) to precisely determine the position of the satellite through laser ranging and (4) to investigate alternative systems for possible Satellite Quantum Communication applications on nanosatellites. The requirements for the correct sizing of the sensor and the chosen physical and functional architecture are defined and presented in the thesis. A meticulous schedule for functional tests is finally outlined, aimed at verifying the correct functionality of the microvibration sensor. These tests serve as a starting point for the future development of the payload.Microvibrations on spacecraft represent an issue for payloads requiring high pointing accuracy and/or stability over time, and they might represent a particular concern for CubeSats and small satellites that, usually, are not equipped with very-high performance attitude control systems. Hence, collecting reliable measures of the vibration spectra during the operations of a CubeSat represents a significant research activity. This thesis presents the development of a sensor, configured as a payload within the AlbaSat mission, capable of accurately measuring the microvibrations in space, with particular focus on those produced by the Momentum Exchange Devices (MED), i.e., Reaction or Momentum Wheels, that represent one of the most important microvibrations sources. The thesis takes place in the framework of the AlbaSat mission. AlbaSat is a 2U CubeSat developed by a student team of the University of Padova under the “Fly Your Satellite! – Design Booster” programme promoted by the European Space Agency (ESA). The mission has four different objectives: (1) to collect measurements of the space debris environment in-situ, (2) to measure the microvibrations on board the CubeSat, (3) to precisely determine the position of the satellite through laser ranging and (4) to investigate alternative systems for possible Satellite Quantum Communication applications on nanosatellites. The requirements for the correct sizing of the sensor and the chosen physical and functional architecture are defined and presented in the thesis. A meticulous schedule for functional tests is finally outlined, aimed at verifying the correct functionality of the microvibration sensor. These tests serve as a starting point for the future development of the payload

    Robotic manipulators for single access surgery

    Get PDF
    This thesis explores the development of cooperative robotic manipulators for enhancing surgical precision and patient outcomes in single-access surgery and, specifically, Transanal Endoscopic Microsurgery (TEM). During these procedures, surgeons manipulate a heavy set of instruments via a mechanical clamp inserted in the patient’s body through a surgical port, resulting in imprecise movements, increased patient risks, and increased operating time. Therefore, an articulated robotic manipulator with passive joints is initially introduced, featuring built-in position and force sensors in each joint and electronic joint brakes for instant lock/release capability. The articulated manipulator concept is further improved with motorised joints, evolving into an active tool holder. The joints allow the incorporation of advanced robotic capabilities such as ultra-lightweight gravity compensation and hands-on kinematic reconfiguration, which can optimise the placement of the tool holder in the operating theatre. Due to the enhanced sensing capabilities, the application of the active robotic manipulator was further explored in conjunction with advanced image guidance approaches such as endomicroscopy. Recent advances in probe-based optical imaging such as confocal endomicroscopy is making inroads in clinical uses. However, the challenging manipulation of imaging probes hinders their practical adoption. Therefore, a combination of the fully cooperative robotic manipulator with a high-speed scanning endomicroscopy instrument is presented, simplifying the incorporation of optical biopsy techniques in routine surgical workflows. Finally, another embodiment of a cooperative robotic manipulator is presented as an input interface to control a highly-articulated robotic instrument for TEM. This master-slave interface alleviates the drawbacks of traditional master-slave devices, e.g., using clutching mechanics to compensate for the mismatch between slave and master workspaces, and the lack of intuitive manipulation feedback, e.g. joint limits, to the user. To address those drawbacks a joint-space robotic manipulator is proposed emulating the kinematic structure of the flexible robotic instrument under control.Open Acces

    Vibration-based condition monitoring of wind turbine blades

    Get PDF
    Significant advances in wind turbine technology have increased the need for maintenance through condition monitoring. Indeed condition monitoring techniques exist and are deployed on wind turbines across Europe and America but are limited in scope. The sensors and monitoring devices used can be very expensive to deploy, further increasing costs within the wind industry. The work outlined in this thesis primarily investigates potential low-cost alternatives in the laboratory environment using vibration-based and modal testing techniques that could be used to monitor the condition of wind turbine blades. The main contributions of this thesis are: (1) the review of vibration-based condition monitoring for changing natural frequency identification; (2) the application of low-cost piezoelectric sounders with proof mass for sensing and measuring vibrations which provide information on structural health; (3) the application of low-cost miniature Micro-Electro-Mechanical Systems (MEMS) accelerometers for detecting and measuring defects in micro wind turbine blades in laboratory experiments; (4) development of an in-service calibration technique for arbitrarily positioned MEMS accelerometers on a medium-sized wind turbine blade. This allowed for easier aligning of coordinate systems and setting the accelerometer calibration values using samples taken over a period of time; (5) laboratory validation of low-cost modal analysis techniques on a medium-sized wind turbine blade; (6) mimicked ice-loading and laboratory measurement of vibration characteristics using MEMS accelerometers on a real wind turbine blade and (7) conceptualisation and systems design of a novel embedded monitoring system that can be installed at manufacture, is self-powered, has signal processing capability and can operate remotely. By applying the conclusions of this work, which demonstrates that low-cost consumer electronics specifically MEMS accelerometers can measure the vibration characteristics of wind turbine blades, the implementation and deployment of these devices can contribute towards reducing the rising costs of condition monitoring within the wind industry

    Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Test report

    Get PDF
    Results of flight tests of the Strapdown Inertial Reference Unit (SIRU) navigation system are presented. The fault tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance. Performance shortcomings are analyzed

    Wireless Sensor Integrated Tool for Characterization of Machining Dynamics in Milling

    Get PDF
    A first step towards practical sensing in the machining environment is the development and use of low cost, reliable sensors. Historically, the ability to record in-process data at an end mill tool tip has been limited by the sensor location. Often, these sensors are mounted on the material workpiece or the machine spindle at significant physical distance from the cutting process. Of specific interest are the problems of tool chatter which causes limitations to productivity and part quality. Although tool chatter is a substantial issue in machining, it remains an open research topic. In this research, a sensor integrated cutting tool holder is developed to specifically analyze the problems related to tool chatter. With the sensor integrated cutting tool holder, the signal to noise ratio is higher than traditional sensing methods. Because of the higher sensitivity, new data analysis methods can be explored. Specifically, the sensor is used in conjunction with a data dependent linear predictive coding algorithm to demonstrate effective prediction of chatter frequencies from stable cutting

    Analysis of tilt-to-length coupling in the GRACE follow-on laser ranging interferometer

    Get PDF
    This thesis provides a detailed analysis of the coupling of satellite rotations into the inter-satellite range, measured by the Laser Ranging Interferometer (LRI) onboard the GRACE Follow-On satellites

    EXPERIMENTAL EVALUATION OF AN RWD VEHICLE WITH PARAMETER EXTRACTION FOR ANALYTICAL MODELING AND EVALUATION

    Get PDF
    This study was conducted to perform experimental vibration testing on a light duty rear wheel drive vehicle. The vehicle is known to have excessive longitudinal acceleration response perceived after step changes in the driver torque command. The excessive response includes shuffle and clunk transients. Experimental testing was performed to understand the coupling between driver torque commands and peak shuffle oscillations. Data was also targeted to understand the coupling between driveline torsional oscillations and longitudinal vehicle vibrations. This data was also used to establish vehicle parameters for use in an analytical CAE model of the driveline and coupling. Driver applied tip-in and tip-out transients were captured with road testing on a rear wheel drive dynamometer test rig. Transducer signatures were captured during testing to estimate backlash size, shuffle frequency, and the influence of vehicle speed or gear. The data successfully extracted the shuffle frequency in 3rd-6th gear. Vehicle parameters extracted were used to assemble a CAE model with correlatio
    • …
    corecore