3,383 research outputs found

    Non-Compositional Term Dependence for Information Retrieval

    Full text link
    Modelling term dependence in IR aims to identify co-occurring terms that are too heavily dependent on each other to be treated as a bag of words, and to adapt the indexing and ranking accordingly. Dependent terms are predominantly identified using lexical frequency statistics, assuming that (a) if terms co-occur often enough in some corpus, they are semantically dependent; (b) the more often they co-occur, the more semantically dependent they are. This assumption is not always correct: the frequency of co-occurring terms can be separate from the strength of their semantic dependence. E.g. "red tape" might be overall less frequent than "tape measure" in some corpus, but this does not mean that "red"+"tape" are less dependent than "tape"+"measure". This is especially the case for non-compositional phrases, i.e. phrases whose meaning cannot be composed from the individual meanings of their terms (such as the phrase "red tape" meaning bureaucracy). Motivated by this lack of distinction between the frequency and strength of term dependence in IR, we present a principled approach for handling term dependence in queries, using both lexical frequency and semantic evidence. We focus on non-compositional phrases, extending a recent unsupervised model for their detection [21] to IR. Our approach, integrated into ranking using Markov Random Fields [31], yields effectiveness gains over competitive TREC baselines, showing that there is still room for improvement in the very well-studied area of term dependence in IR

    A Study of Metrics of Distance and Correlation Between Ranked Lists for Compositionality Detection

    Full text link
    Compositionality in language refers to how much the meaning of some phrase can be decomposed into the meaning of its constituents and the way these constituents are combined. Based on the premise that substitution by synonyms is meaning-preserving, compositionality can be approximated as the semantic similarity between a phrase and a version of that phrase where words have been replaced by their synonyms. Different ways of representing such phrases exist (e.g., vectors [1] or language models [2]), and the choice of representation affects the measurement of semantic similarity. We propose a new compositionality detection method that represents phrases as ranked lists of term weights. Our method approximates the semantic similarity between two ranked list representations using a range of well-known distance and correlation metrics. In contrast to most state-of-the-art approaches in compositionality detection, our method is completely unsupervised. Experiments with a publicly available dataset of 1048 human-annotated phrases shows that, compared to strong supervised baselines, our approach provides superior measurement of compositionality using any of the distance and correlation metrics considered

    Semantics, Modelling, and the Problem of Representation of Meaning -- a Brief Survey of Recent Literature

    Full text link
    Over the past 50 years many have debated what representation should be used to capture the meaning of natural language utterances. Recently new needs of such representations have been raised in research. Here I survey some of the interesting representations suggested to answer for these new needs.Comment: 15 pages, no figure

    A Proof-Theoretic Approach to Scope Ambiguity in Compositional Vector Space Models

    Full text link
    We investigate the extent to which compositional vector space models can be used to account for scope ambiguity in quantified sentences (of the form "Every man loves some woman"). Such sentences containing two quantifiers introduce two readings, a direct scope reading and an inverse scope reading. This ambiguity has been treated in a vector space model using bialgebras by (Hedges and Sadrzadeh, 2016) and (Sadrzadeh, 2016), though without an explanation of the mechanism by which the ambiguity arises. We combine a polarised focussed sequent calculus for the non-associative Lambek calculus NL, as described in (Moortgat and Moot, 2011), with the vector based approach to quantifier scope ambiguity. In particular, we establish a procedure for obtaining a vector space model for quantifier scope ambiguity in a derivational way.Comment: This is a preprint of a paper to appear in: Journal of Language Modelling, 201
    • …
    corecore