34 research outputs found

    A Brief Tour through Provenance in Scientific Workflows and Databases

    Get PDF
    Within computer science, the term provenance has multiple meanings, due to different motivations, perspectives, and assumptions prevalent in the respective communities. This chapter provides a high-level “sightseeing tour” of some of those different notions and uses of provenance in scientific workflows and databases.Ope

    On the Cohomology of Contextuality

    Full text link
    Recent work by Abramsky and Brandenburger used sheaf theory to give a mathematical formulation of non-locality and contextuality. By adopting this viewpoint, it has been possible to define cohomological obstructions to the existence of global sections. In the present work, we illustrate new insights into different aspects of this theory. We shed light on the power of detection of the cohomological obstruction by showing that it is not a complete invariant for strong contextuality even under symmetry and connectedness restrictions on the measurement cover, disproving a previous conjecture. We generalise obstructions to higher cohomology groups and show that they give rise to a refinement of the notion of cohomological contextuality: different "levels" of contextuality are organised in a hierarchy of logical implications. Finally, we present an alternative description of the first cohomology group in terms of torsors, resulting in a new interpretation of the cohomological obstructions.Comment: In Proceedings QPL 2016, arXiv:1701.0024

    Continuous-variable nonlocality and contextuality

    Get PDF
    Contextuality is a non-classical behaviour that can be exhibited by quantum systems. It is increasingly studied for its relationship to quantum-over-classical advantages in informatic tasks. To date, it has largely been studied in discrete variable scenarios, where observables take values in discrete and usually finite sets. Practically, on the other hand, continuous-variable scenarios offer some of the most promising candidates for implementing quantum computations and informatic protocols. Here we set out a framework for treating contextuality in continuous-variable scenarios. It is shown that the Fine--Abramsky--Brandenburger theorem extends to this setting, an important consequence of which is that nonlocality can be viewed as a special case of contextuality, as in the discrete case. The contextual fraction, a quantifiable measure of contextuality that bears a precise relationship to Bell inequality violations and quantum advantages, can also be defined in this setting. It is shown to be a non-increasing monotone with respect to classical operations that include binning to discretise data. Finally, we consider how the contextual fraction can be formulated as an infinite linear program, and calculated with increasing accuracy using semi-definite programming approximations.Comment: 27 pages including 6 pages supplemental material, 2 figure

    Rewriting Complex Queries from Cloud to Fog under Capability Constraints to Protect the Users' Privacy

    Get PDF
    In this paper we show how existing query rewriting and query containment techniques can be used to achieve an efficient and privacy-aware processing of queries. To achieve this, the whole network structure, from data producing sensors up to cloud computers, is utilized to create a database machine consisting of billions of devices from the Internet of Things. Based on previous research in the field of database theory, especially query rewriting, we present a concept to split a query into fragment and remainder queries. Fragment queries can operate on resource limited devices to filter and preaggregate data. Remainder queries take these data and execute the last, complex part of the original queries on more powerful devices. As a result, less data is processed and forwarded in the network and the privacy principle of data minimization is accomplished

    Incremental View Maintenance For Collection Programming

    Get PDF
    In the context of incremental view maintenance (IVM), delta query derivation is an essential technique for speeding up the processing of large, dynamic datasets. The goal is to generate delta queries that, given a small change in the input, can update the materialized view more efficiently than via recomputation. In this work we propose the first solution for the efficient incrementalization of positive nested relational calculus (NRC+) on bags (with integer multiplicities). More precisely, we model the cost of NRC+ operators and classify queries as efficiently incrementalizable if their delta has a strictly lower cost than full re-evaluation. Then, we identify IncNRC+; a large fragment of NRC+ that is efficiently incrementalizable and we provide a semantics-preserving translation that takes any NRC+ query to a collection of IncNRC+ queries. Furthermore, we prove that incremental maintenance for NRC+ is within the complexity class NC0 and we showcase how recursive IVM, a technique that has provided significant speedups over traditional IVM in the case of flat queries [25], can also be applied to IncNRC+.Comment: 24 pages (12 pages plus appendix

    A Calculus of Chemical Systems

    Get PDF
    In recent years various calculi have been proposed for modelling biological systems, typically intracellular pathways. These calculi generally fall into one of two camps: ones based on process calculi, such as Milner’s pi-calculus [24], and rule-based ones. Examples of the former include [31, 32, 30]; examples of the latter include BIOCHAM, Îș, BioNet
    corecore