5,285 research outputs found

    Implicit dialogical premises, explanation as argument: a corpus-based reconstruction

    Get PDF
    This paper focuses on an explanation in a newspaper article: why new European Union citizens will come to the UK from Eastern Europe (e.g., because of available jobs). Using a corpus-based method of analysis, I show how regular target readers have been positioned to generate premises in dialogue with the explanation propositions, and thus into an understanding of the explanation as an argument, one which contains a biased conclusion not apparent in the text. Employing this method, and in particular ‘corpus comparative statistical keywords’, I show how two issues can be freshly looked at: implicit premise recovery; the argument/explanation distinction

    Improvement of flight simulator feeling using adaptive fuzzy backlash compensation

    Get PDF
    In this paper we addressed the problem of improving the control of DC motors used for the specific application of a 3 degrees of freedom moving base flight simulator. Indeed the presence of backlash in DC motors gearboxes induces shocks and naturally limits the flight feeling. In this paper, dynamic inversion with Fuzzy Logic is used to design an adaptive backlash compensator. The classification property of fuzzy logic techniques makes them a natural candidate for the rejection of errors induced by the backlash. A tuning algorithm is given for the fuzzy logic parameters, so that the output backlash compensation scheme becomes adaptive. The fuzzy backlash compensator is first validated using a realistic model of the mechanical system and is actually tested on the real flight simulator

    Semantic Information G Theory and Logical Bayesian Inference for Machine Learning

    Get PDF
    An important problem with machine learning is that when label number n\u3e2, it is very difficult to construct and optimize a group of learning functions, and we wish that optimized learning functions are still useful when prior distribution P(x) (where x is an instance) is changed. To resolve this problem, the semantic information G theory, Logical Bayesian Inference (LBI), and a group of Channel Matching (CM) algorithms together form a systematic solution. MultilabelMultilabel A semantic channel in the G theory consists of a group of truth functions or membership functions. In comparison with likelihood functions, Bayesian posteriors, and Logistic functions used by popular methods, membership functions can be more conveniently used as learning functions without the above problem. In Logical Bayesian Inference (LBI), every label’s learning is independent. For Multilabel learning, we can directly obtain a group of optimized membership functions from a big enough sample with labels, without preparing different samples for different labels. A group of Channel Matching (CM) algorithms are developed for machine learning. For the Maximum Mutual Information (MMI) classification of three classes with Gaussian distributions on a two-dimensional feature space, 2-3 iterations can make mutual information between three classes and three labels surpass 99% of the MMI for most initial partitions. For mixture models, the Expectation-Maxmization (EM) algorithm is improved and becomes the CM-EM algorithm, which can outperform the EM algorithm when mixture ratios are imbalanced, or local convergence exists. The CM iteration algorithm needs to combine neural networks for MMI classifications on high-dimensional feature spaces. LBI needs further studies for the unification of statistics and logic

    A survey of fuzzy logic in wireless localization

    Get PDF

    Human activity recognition applying computational intelligence techniques for fusing information related to WiFi positioning and body posture

    Get PDF
    IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE WCCI 2010, 18/07/2010-23/07/2010, Barcelona, España.This work presents a general framework for people indoor activity recognition. Firstly, a Wireless Fidelity (WiFi) localization system implemented as a Fuzzy Rulebased Classifier (FRBC) is used to obtain an approximate position at the level of discrete zones (office, corridor, meeting room, etc). Secondly, a Fuzzy Finite State Machine (FFSM) is used for human body posture recognition (seated, standing upright or walking). Finally, another FFSM combines bothWiFi localization and posture recognition to obtain a robust, reliable, and easily understandable activity recognition system (working in the desk room, crossing the corridor, having a meeting, etc). Each user carries with a personal digital agenda (PDA) or smart-phone equipped with a WiFi interface for localization task and accelerometers for posture recognition. Our approach does not require adding new hardware to the experimental environment. It relies on the WiFi access points (APs) widely available in most public and private buildings. We include a practical experimentation where good results were achieved.Ministerio de Ciencia e InnovaciónComunidad de Madri

    Fuzzy FMECA Process Analysis for Managing the Risks in the Lifecycle of a CBCT Scanner

    Get PDF
    The Failure Mode, Effects, and Criticality Analysis (FMECA) is one of the risk analysis techniques proposed by the ISO 14971 Standard. This analysis allows to identify and assess the consequences of faults that affect each component of a complex system. The FMECA is a forward-type technique used for highlighting critical points and classifying them by priority. It also makes it possible to evaluate the extent of failures by means of numerical indices. It can be applied to a product or to a work process. In the latter case we talk about Process-FMECA. The application of the Process-FMECA to bioengineering is of particular interest because this procedure provides an analysis related to risk management during all the different phases of the medical device life cycle. However, practical applications of this method have revealed some shortcomings that can lead to inaccuracies and inconsistencies regarding the risk analysis and consequent risk prioritization. This paper presents an example of application of a Fuzzy Process-FMECA, an improved Process-FMECA based on fuzzy logic, to a small computerized tomography (CT) device prototype designed for studying the extremities of the human body. This prototype is a CT device that uses the Cone Beam CT (CBCT) technology. The Fuzzy Process-FMECA analysis has made it possible to produce a table of risks, that are quantified according to the specifications of the method. The analysis has shown that each phase or activity is fundamental to guarantee a correct functioning of the device. The methodology applied to this specific device can be paradigmatic for analyzing the process risks for any other medical device
    • 

    corecore