180,226 research outputs found

    Validation of a laboratory method for evaluating dynamic properties of reconstructed equine racetrack surfaces.

    Get PDF
    BackgroundRacetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior.ObjectiveTo develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties.MethodsTrack-testing device (TTD) impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack) and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression.ResultsMost dynamic surface property setting differences (racetrack-laboratory) were small relative to surface material type differences (dirt-synthetic). Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces.ConclusionsLaboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD).Potential relevanceDynamic impact properties of race surfaces can be evaluated in a laboratory setting, allowing for further study of factors affecting surface behavior under controlled conditions

    Motion compensated micro-CT reconstruction for in-situ analysis of dynamic processes

    Get PDF
    This work presents a framework to exploit the synergy between Digital Volume Correlation ( DVC) and iterative CT reconstruction to enhance the quality of high-resolution dynamic X-ray CT (4D-mu CT) and obtain quantitative results from the acquired dataset in the form of 3D strain maps which can be directly correlated to the material properties. Furthermore, we show that the developed framework is capable of strongly reducing motion artifacts even in a dataset containing a single 360 degrees rotation

    Superresolution Microscopy of the Volume Phase Transition of pNIPAM Microgels

    Get PDF
    Hierarchical polymer structures such as pNIPAM microgels have been extensively studied for their ability to undergo significant structural and physical transformations that can be controlled by external stimuli such as temperature, pH or solvent composition. However, direct three-dimensional visualization of individual particles in situ have so far been hindered by insufficient resolution, with optical microscopy, or contrast, with electron microscopy. In recent years superresolution microscopy techniques have emerged that in principle can provide nanoscopic optical resolution. Here we report on the in-situ superresolution microscopy of dye-labeled submicron sized pNIPAM microgels revealing the internal microstructure during swelling and collapse of individual particles. Using direct STochastic Optical Reconstruction Microscopy (dSTORM) we demonstrate a lateral optical resolution of 30nm and an axial resolution of 60nm.Comment: 7 pages, 5 figure

    High quality Fe3-deltaO4/InAs hybrid structure for electrical spin injection

    Get PDF
    Single Crystalline Fe3-deltaO4 (0<=delta<=0.33) films have been epitaxially grown on InAs (001) substrates by molecular beam epitaxy using O2 as source of active oxygen. Under optimum growth conditions in-situ real time reflection high-energy electron diffraction patterns along with ex-situ atomic force microscopy indicated the (001) Fe3-deltaO4 to be grown under step-flow-growth mode with a characteristic surface reconstruction. X-ray photoelectron spectroscopy demonstrate the possibility to obtain iron oxides with compositions ranging from Fe3O4 to gamma-Fe2O3. Superconducting quantum interference device magnetometer at 300K shows well behaved magnetic properties giving therefore credibility to the promise of iron based oxides for spintronic applications.Comment: 3 pages, 4 figures appeared in Virtual Journal of Nanoscale Science and Technology, Vol:15, issue12, March 26, 200