57 research outputs found

    Synchronization of coupled neural oscillators with heterogeneous delays

    Full text link
    We investigate the effects of heterogeneous delays in the coupling of two excitable neural systems. Depending upon the coupling strengths and the time delays in the mutual and self-coupling, the compound system exhibits different types of synchronized oscillations of variable period. We analyze this synchronization based on the interplay of the different time delays and support the numerical results by analytical findings. In addition, we elaborate on bursting-like dynamics with two competing timescales on the basis of the autocorrelation function.Comment: 18 pages, 14 figure

    A comparative study fourth order runge kutta-tvd Scheme and fluent software case of inlet flow problems

    Get PDF
    Inlet as part of aircraft engine plays important role in controlling the rate of airflow entering to the engine. The shape of inlet has to be designed in such away to make the rate of airflow does not change too much with angle of attack and also not much pressure losses at the time, the airflow entering to the compressor section. It is therefore understanding on the flow pattern inside the inlet is important. The present work presents on the use of the Fourth Order Runge Kutta – Harten Yee TVD scheme for the flow analysis inside inlet. The flow is assumed as an inviscid quasi two dimensional compressible flow. As an initial stage of computer code development, here uses three generic inlet models. The first inlet model to allow the problem in hand solved as the case of inlet with expansion wave case. The second inlet model will relate to the case of expansion compression wave. The last inlet model concerns with the inlet which produce series of weak shock wave and end up with a normal shock wave. The comparison result for the same test case with Fluent Software [1, 2] indicates that the developed computer code based on the Fourth Order Runge Kutta – Harten – Yee TVD scheme are very close to each other. However for complex inlet geometry, the problem is in the way how to provide an appropriate mesh model

    Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling

    Full text link
    Small lattices of NN nearest neighbor coupled excitable FitzHugh-Nagumo systems, with time-delayed coupling are studied, and compared with systems of FitzHugh-Nagumo oscillators with the same delayed coupling. Bifurcations of equilibria in N=2 case are studied analytically, and it is then numerically confirmed that the same bifurcations are relevant for the dynamics in the case N>2N>2. Bifurcations found include inverse and direct Hopf and fold limit cycle bifurcations. Typical dynamics for different small time-lags and coupling intensities could be excitable with a single globally stable equilibrium, asymptotic oscillatory with symmetric limit cycle, bi-stable with stable equilibrium and a symmetric limit cycle, and again coherent oscillatory but non-symmetric and phase-shifted. For an intermediate range of time-lags inverse sub-critical Hopf and fold limit cycle bifurcations lead to the phenomenon of oscillator death. The phenomenon does not occur in the case of FitzHugh-Nagumo oscillators with the same type of coupling.Comment: accepted by Phys.Rev.

    Birth and destruction of collective oscillations in a network of two populations of coupled type 1 neurons

    Full text link
    We study the macroscopic dynamics of large networks of excitable type 1 neurons composed of two populations interacting with disparate but symmetric intra- and inter-population coupling strengths. This nonuniform coupling scheme facilitates symmetric equilibria, where both populations display identical firing activity, characterized by either quiescent or spiking behavior, or asymmetric equilibria, where the firing activity of one population exhibits quiescent but the other exhibits spiking behavior. Oscillations in the firing rate are possible if neurons emit pulses with non-zero width but are otherwise quenched. Here, we explore how collective oscillations emerge for two statistically identical neuron populations in the limit of an infinite number of neurons. A detailed analysis reveals how collective oscillations are born and destroyed in various bifurcation scenarios and how they are organized around higher codimension bifurcation points. Since both symmetric and asymmetric equilibria display bistable behavior, a large configuration space with steady and oscillatory behavior is available. Switching between configurations of neural activity is relevant in functional processes such as working memory and the onset of collective oscillations in motor control

    Synchrony and bifurcations in coupled dynamical systems and effects of time delay

    Get PDF
    Dynamik auf Netzwerken ist ein mathematisches Feld, das in den letzten Jahrzehnten schnell gewachsen ist und Anwendungen in zahlreichen Disziplinen wie z.B. Physik, Biologie und Soziologie findet. Die Funktion vieler Netzwerke hängt von der Fähigkeit ab, die Elemente des Netzwerkes zu synchronisieren. Mit anderen Worten, die Existenz und die transversale Stabilität der synchronen Mannigfaltigkeit sind zentrale Eigenschaften. Erst seit einigen Jahren wird versucht, den verwickelten Zusammenhang zwischen der Kopplungsstruktur und den Stabilitätseigenschaften synchroner Zustände zu verstehen. Genau das ist das zentrale Thema dieser Arbeit. Zunächst präsentiere ich erste Ergebnisse zur Klassifizierung der Kanten eines gerichteten Netzwerks bezüglich ihrer Bedeutung für die Stabilität des synchronen Zustands. Folgend untersuche ich ein komplexes Verzweigungsszenario in einem gerichteten Ring von Stuart-Landau Oszillatoren und zeige, dass das Szenario persistent ist, wenn dem Netzwerk eine schwach gewichtete Kante hinzugefügt wird. Daraufhin untersuche ich synchrone Zustände in Ringen von Phasenoszillatoren die mit Zeitverzögerung gekoppelt sind. Ich bespreche die Koexistenz synchroner Lösungen und analysiere deren Stabilität und Verzweigungen. Weiter zeige ich, dass eine Zeitverschiebung genutzt werden kann, um Muster im Ring zu speichern und wiederzuerkennen. Diese Zeitverschiebung untersuche ich daraufhin für beliebige Kopplungsstrukturen. Ich zeige, dass invariante Mannigfaltigkeiten des Flusses sowie ihre Stabilität unter der Zeitverschiebung erhalten bleiben. Darüber hinaus bestimme ich die minimale Anzahl von Zeitverzögerungen, die gebraucht werden, um das System äquivalent zu beschreiben. Schließlich untersuche ich das auffällige Phänomen eines nichtstetigen Übergangs zu Synchronizität in Klassen großer Zufallsnetzwerke indem ich einen kürzlich eingeführten Zugang zur Beschreibung großer Zufallsnetzwerke auf den Fall zeitverzögerter Kopplungen verallgemeinere.Since a couple of decades, dynamics on networks is a rapidly growing branch of mathematics with applications in various disciplines such as physics, biology or sociology. The functioning of many networks heavily relies on the ability to synchronize the network’s nodes. More precisely, the existence and the transverse stability of the synchronous manifold are essential properties. It was only in the last few years that people tried to understand the entangled relation between the coupling structure of a network, given by a (di-)graph, and the stability properties of synchronous states. This is the central theme of this dissertation. I first present results towards a classification of the links in a directed, diffusive network according to their impact on the stability of synchronization. Then I investigate a complex bifurcation scenario observed in a directed ring of Stuart-Landau oscillators. I show that under the addition of a single weak link, this scenario is persistent. Subsequently, I investigate synchronous patterns in a directed ring of phase oscillators coupled with time delay. I discuss the coexistence of multiple of synchronous solutions and investigate their stability and bifurcations. I apply these results by showing that a certain time-shift transformation can be used in order to employ the ring as a pattern recognition device. Next, I investigate the same time-shift transformation for arbitrary coupling structures in a very general setting. I show that invariant manifolds of the flow together with their stability properties are conserved under the time-shift transformation. Furthermore, I determine the minimal number of delays needed to equivalently describe the system’s dynamics. Finally, I investigate a peculiar phenomenon of non-continuous transition to synchrony observed in certain classes of large random networks, generalizing a recently introduced approach for the description of large random networks to the case of delayed couplings

    Neuroinspired control strategies with applications to flapping flight

    Get PDF
    This dissertation is centered on a theoretical, simulation, and experimental study of control strategies which are inspired by biological systems. Biological systems, along with sufficiently complicated engineered systems, often have many interacting degrees of freedom and need to excite large-displacement oscillations in order to locomote. Combining these factors can make high-level control design difficult. This thesis revolves around three different levels of abstraction, providing tools for analysis and design. First, we consider central pattern generators (CPGs) to control flapping-flight dynamics. The key idea here is dimensional reduction - we want to convert complicated interactions of many degrees of freedom into a handful of parameters which have intuitive connections to the overall system behavior, leaving the control designer unconcerned with the details of particular motions. A rigorous mathematical and control theoretic framework to design complex three-dimensional wing motions is presented based on phase synchronization of nonlinear oscillators. In particular, we show that flapping-flying dynamics without a tail or traditional aerodynamic control surfaces can be effectively controlled by a reduced set of central pattern generator parameters that generate phase-synchronized or symmetry-breaking oscillatory motions of two main wings. Furthermore, by using a Hopf bifurcation, we show that tailless aircraft (inspired by bats) alternating between flapping and gliding can be effectively stabilized by smooth wing motions driven by the central pattern generator network. Results of numerical simulation with a full six-degree-of-freedom flight dynamic model validate the effectiveness of the proposed neurobiologically inspired control approach. Further, we present experimental micro aerial vehicle (MAV) research with low-frequency flapping and articulated wing gliding. The importance of phase difference control via an abstract mathematical model of central pattern generators is confirmed with a robotic bat on a 3-DOF pendulum platform. An aerodynamic model for the robotic bat based on the complex wing kinematics is presented. Closed loop experiments show that control dimension reduction is achievable - unstable longitudinal modes are stabilized and controlled using only two control parameters. A transition of flight modes, from flapping to gliding and vice-versa, is demonstrated within the CPG control scheme. The second major thrust is inspired by this idea that mode switching is useful. Many bats and birds adopt a mixed strategy of flapping and gliding to provide agility when necessary and to increase overall efficiency. This work explores dwell time constraints on switched systems with multiple, possibly disparate invariant limit sets. We show that, under suitable conditions, trajectories globally converge to a superset of the limit sets and then remain in a second, larger superset. We show the effectiveness of the dwell-time conditions by using examples of nonlinear switching limit cycles from our work on flapping flight. This level of abstraction has been found to be useful in many ways, but it also produces its own challenges. For example, we discuss death of oscillation which can occur for many limit-cycle controllers and the difficulty in incorporating fast, high-displacement reflex feedback. This leads us to our third major thrust - considering biologically realistic neuron circuits instead of a limit cycle abstraction. Biological neuron circuits are incredibly diverse in practice, giving us a convincing rationale that they can aid us in our quest for flexibility. Nevertheless, that flexibility provides its own challenges. It is not currently known how most biological neuron circuits work, and little work exists that connects the principles of a neuron circuit to the principles of control theory. We begin the process of trying to bridge this gap by considering the simplest of classical controllers, PD control. We propose a simple two-neuron, two-synapse circuit based on the concept that synapses provide attenuation and a delay. We present a simulation-based method of analysis, including a smoothing algorithm, a steady-state response curve, and a system identification procedure for capturing differentiation. There will never be One True Control Method that will solve all problems. Nature's solution to a diversity of systems and situations is equally diverse. This will inspire many strategies and require a multitude of analysis tools. This thesis is my contribution of a few

    Adaptive motor control in crayfish

    Get PDF
    International audienceThis article reviews the principles that rule the organization of motor commands that have been described over the past ®ve decades in cray®sh. The adaptation of motor behaviors requires the integration of sensory cues into the motor command. The respective roles of central neural networks and sensory feedback are presented in the order of increasing complexity. The simplest circuits described are those involved in the control of a single joint during posture (negative feedback±resistance re¯ex) and movement (modulation of sensory feedback and reversal of the re¯ex into an assistance re¯ex). More complex integration is required to solve problems of coordination of joint movements in a pluri-segmental appendage, and coordination of dierent limbs and dierent motor systems. In addition, beyond the question of mechanical ®tting, the motor command must be appropriate to the behavioral context. Therefore, sensory information is used also to select adequate motor programs. A last aspect of adaptability concerns the possibility of neural networks to change their properties either temporarily (such on-line modulation exerted, for example, by presynaptic mechanisms) or more permanently (such as plastic changes that modify the synaptic ecacy). Finally, the question of how``automatic'' local component networks are controlled by descending pathways, in order to achieve behaviors, is discussed.

    Mathematical modelling and brain dynamical networks

    Get PDF
    In this thesis, we study the dynamics of the Hindmarsh-Rose (HR) model which studies the spike-bursting behaviour of the membrane potential of a single neuron. We study the stability of the HR system and compute its Lyapunov exponents (LEs). We consider coupled general sections of the HR system to create an undirected brain dynamical network (BDN) of Nn neurons. Then, we study the concepts of upper bound of mutual information rate (MIR) and synchronisation measure and their dependence on the values of electrical and chemical couplings. We analyse the dynamics of neurons in various regions of parameter space plots for two elementary examples of 3 neurons with two different types of electrical and chemical couplings. We plot the upper bound Ic and the order parameter rho (the measure of synchronisation) and the two largest Lyapunov exponents LE1 and LE2 versus the chemical coupling gn and electrical coupling gl. We show that, even for small number of neurons, the dynamics of the system depends on the number of neurons and the type of coupling strength between them. Finally, we evolve a network of Hindmarsh-Rose neurons by increasing the entropy of the system. In particular, we choose the Kolmogorov-Sinai entropy: HKS (Pesin identity) as the evolution rule. First, we compute the HKS for a network of 4 HR neurons connected simultaneously by two undirected electrical and two undirected chemical links. We get different entropies with the use of different values for both the chemical and electrical couplings. If the entropy of the system is positive, the dynamics of the system is chaotic and if it is close to zero, the trajectory of the system converges to one of the fixed points and loses energy. Then, we evolve a network of 6 clusters of 10 neurons each. Neurons in each cluster are connected only by electrical links and their connections form small-world networks. The six clusters connect to each other only by chemical links. We compare between the combined effect of chemical and electrical couplings with the two concepts, the information flow capacity Ic and HKS in evolving the BDNs and show results that the brain networks might evolve based on the principle of the maximisation of their entropies
    corecore