433 research outputs found

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    Exponential stabilization of fractional-order continuous-time dynamic systems via event-triggered impulsive control

    Get PDF
    Exponential stabilization of fractional-order continuous-time dynamic systems via eventtriggered impulsive control (EIC) approach is investigated in this paper. Nonlinear and linear fractional-order continuous-time dynamic systems are studied, respectively. The impulsive instants are determined by some given event-triggering function and event-triggering condition, which are dependent on the state of the systems. Sufficient conditions on exponential stabilization for nonlinear and linear cases are presented, respectively. Moreover, the Zeno-behavior of impulsive instants is excluded. Finally, the validity of theoretical results are also illustrated by some numerical simulation examples including the synchronization control of fractional-order jerk chaotic system

    On the impulsive synchronization control for a class of chaotic systems

    Get PDF
    The problem on chaos synchronization for a class of chaotic system is addressed. Based on impulsive control theory and by constructing a novel Lyapunov functional, new impulsive synchronization strategies are presented and possess more practical application value. Finally some typical numerical simulation examples are included to demonstrate the effectiveness of the theoretical results

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Complex Projective Synchronization in Drive-Response Stochastic Complex Networks by Impulsive Pinning Control

    Get PDF
    The complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems is considered. The impulsive pinning control scheme is adopted to achieve complex projective synchronization and several simple and practical sufficient conditions are obtained in a general drive-response network. In addition, the adaptive feedback algorithms are proposed to adjust the control strength. Several numerical simulations are provided to show the effectiveness and feasibility of the proposed methods

    Synchronization of fractional chaotic complex networks with delays

    Get PDF
    summary:The synchronization of fractional-order complex networks with delay is investigated in this paper. By constructing a novel Lyapunov-Krasovskii function VV and taking integer derivative instead of fractional derivative of the function, a sufficient criterion is obtained in the form of linear matrix inequalities to realize synchronizing complex dynamical networks. Finally, a numerical example is shown to illustrate the feasibility and effectiveness of the proposed method

    Synchronization of chaotic delayed systems via intermittent control and its adaptive strategy

    Get PDF
    In this paper the problem of synchronization for delayed chaotic systems is considered based on aperiodic intermittent control. First, delayed chaotic systems are proposed via aperiodic adaptive intermittent control. Next, to cut down the control gain, a new generalized intermittent control and its adaptive strategy is introduced. Then, by constructing a piecewise Lyapunov auxiliary function and making use of piecewise analysis technique, some effective and novel criteria are obtained to ensure the global synchronization of delayed chaotic systems by means of the designed control protocols. At the end, two examples with numerical simulations are provided to verify the effectiveness of the theoretical results proposed scheme
    • …
    corecore