413 research outputs found

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Robust Observer Design for Hybrid Dynamical Systems with Linear Maps and Approximately Known Jump Times

    Get PDF
    This paper proposes a general framework for the state estimation of plants given by hybrid systems with linear flow and jump maps, in the favorable case where their jump events can be detected (almost) instantaneously. A candidate observer consists of a copy of the plant's hybrid dynamics with continuous-time and/or discrete-time correction terms multiplied by two constant gains, and with jumps triggered by those of the plant. Assuming that the time between successive jumps is known to belong to a given closed set allows us to formulate an augmented system with a timer which keeps track of the time elapsed between successive jumps and facilitates the analysis. Then, since the jumps of the plant and of the observer are synchronized, the error system has time-invariant linear flow and jump maps, and a Lyapunov analysis leads to sufficient conditions for the design of the observer gains for uniform asymptotic stability in three different settings: continuous and discrete updates, only discrete updates, and only continuous updates. These conditions take the form of matrix inequalities, which we solve in examples including cases where the time between successive jumps is unbounded or tends to zero (Zeno behavior), and cases where either both the continuous and discrete dynamics, only one of them, or neither of them are detectable. Finally, we study the robustness of this approach when the jumps of the observer are delayed with respect to those of the plant. We show that if the plant's trajectories are bounded and the time between successive jumps is lower-bounded away from zero, the estimation error is bounded, and arbitrarily small outside the delay intervals between the plant's and the observer's jumps

    Observer based active fault tolerant control of descriptor systems

    Get PDF
    The active fault tolerant control (AFTC) uses the information provided by fault detection and fault diagnosis (FDD) or fault estimation (FE) systems offering an opportunity to improve the safety, reliability and survivability for complex modern systems. However, in the majority of the literature the roles of FDD/FE and reconfigurable control are described as separate design issues often using a standard state space (i.e. non-descriptor) system model approach. These separate FDD/FE and reconfigurable control designs may not achieve desired stability and robustness performance when combined within a closed-loop system.This work describes a new approach to the integration of FE and fault compensation as a form of AFTC within the context of a descriptor system rather than standard state space system. The proposed descriptor system approach has an integrated controller and observer design strategy offering better design flexibility compared with the equivalent approach using a standard state space system. An extended state observer (ESO) is developed to achieve state and fault estimation based on a joint linear matrix inequality (LMI) approach to pole-placement and H∞ optimization to minimize the effects of bounded exogenous disturbance and modelling uncertainty. A novel proportional derivative (PD)-ESO is introduced to achieve enhanced estimation performance, making use of the additional derivative gain. The proposed approaches are evaluated using a common numerical example adapted from the recent literature and the simulation results demonstrate clearly the feasibility and power of the integrated estimation and control AFTC strategy. The proposed AFTC design strategy is extended to an LPV descriptor system framework as a way of dealing with the robustness and stability of the system with bounded parameter variations arising from the non-linear system, where a numerical example demonstrates the feasibility of the use of the PD-ESO for FE and compensation integrated within the AFTC system.A non-linear offshore wind turbine benchmark system is studied as an application of the proposed design strategy. The proposed AFTC scheme uses the existing industry standard wind turbine generator angular speed reference control system as a “baseline” control within the AFTC scheme. The simulation results demonstrate the added value of the new AFTC system in terms of good fault tolerance properties, compared with the existing baseline system
    corecore