2,722 research outputs found

    Impulse-Based Hybrid Motion Control

    Get PDF
    The impulse-based discrete feedback control has been proposed in previous work for the second-order motion systems with damping uncertainties. The sate-dependent discrete impulse action takes place at zero crossing of one of both states, either relative position or velocity. In this paper, the proposed control method is extended to a general hybrid motion control form. We are using the paradigm of hybrid system modeling while explicitly specifying the state trajectories each time the continuous system state hits the guards that triggers impulsive control actions. The conditions for a stable convergence to zero equilibrium are derived in relation to the control parameters, while requiring only the upper bound of damping uncertainties to be known. Numerical examples are shown for an underdamped closed-loop dynamics with oscillating transients, an upper bounded time-varying positive system damping, and system with an additional Coulomb friction damping.Comment: 6 pages, 4 figures, IEEE conferenc

    Nonlinear H_inf -Control of Mechanical Systems under Unilateral Constraints on the Position

    Get PDF
    6 pagesNational audienceThe work focuses on the study of hybrid mechanical systems under unilateral constraints on the position. The problem of robust control of mechanical systems is addressed under unilateral constraints by designing a nonlinear H-infinity -controller developed in the nonsmooth setting, covering impact phenomena. Performance issues of the nonlinear H-infinity-tracking controller are illustrated in a numerical simulation

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    Nonlinear model predictive motion control of linear motor drive for micro/nano-positioning applications

    Get PDF

    Earthquakes: from chemical alteration to mechanical rupture

    Full text link
    In the standard rebound theory of earthquakes, elastic deformation energy is progressively stored in the crust until a threshold is reached at which it is suddenly released in an earthquake. We review three important paradoxes, the strain paradox, the stress paradox and the heat flow paradox, that are difficult to account for in this picture, either individually or when taken together. Resolutions of these paradoxes usually call for additional assumptions on the nature of the rupture process (such as novel modes of deformations and ruptures) prior to and/or during an earthquake, on the nature of the fault and on the effect of trapped fluids within the crust at seismogenic depths. We review the evidence for the essential importance of water and its interaction with the modes of deformations. Water is usually seen to have mainly the mechanical effect of decreasing the normal lithostatic stress in the fault core on one hand and to weaken rock materials via hydrolytic weakening and stress corrosion on the other hand. We also review the evidences that water plays a major role in the alteration of minerals subjected to finite strains into other structures in out-of-equilibrium conditions. This suggests novel exciting routes to understand what is an earthquake, that requires to develop a truly multidisciplinary approach involving mineral chemistry, geology, rupture mechanics and statistical physics.Comment: 44 pages, 1 figures, submitted to Physics Report
    corecore