1,016 research outputs found

    Lorentzian Iterative Hard Thresholding: Robust Compressed Sensing with Prior Information

    Full text link
    Commonly employed reconstruction algorithms in compressed sensing (CS) use the L2L_2 norm as the metric for the residual error. However, it is well-known that least squares (LS) based estimators are highly sensitive to outliers present in the measurement vector leading to a poor performance when the noise no longer follows the Gaussian assumption but, instead, is better characterized by heavier-than-Gaussian tailed distributions. In this paper, we propose a robust iterative hard Thresholding (IHT) algorithm for reconstructing sparse signals in the presence of impulsive noise. To address this problem, we use a Lorentzian cost function instead of the L2L_2 cost function employed by the traditional IHT algorithm. We also modify the algorithm to incorporate prior signal information in the recovery process. Specifically, we study the case of CS with partially known support. The proposed algorithm is a fast method with computational load comparable to the LS based IHT, whilst having the advantage of robustness against heavy-tailed impulsive noise. Sufficient conditions for stability are studied and a reconstruction error bound is derived. We also derive sufficient conditions for stable sparse signal recovery with partially known support. Theoretical analysis shows that including prior support information relaxes the conditions for successful reconstruction. Simulation results demonstrate that the Lorentzian-based IHT algorithm significantly outperform commonly employed sparse reconstruction techniques in impulsive environments, while providing comparable performance in less demanding, light-tailed environments. Numerical results also demonstrate that the partially known support inclusion improves the performance of the proposed algorithm, thereby requiring fewer samples to yield an approximate reconstruction.Comment: 28 pages, 9 figures, accepted in IEEE Transactions on Signal Processin

    Super-Resolution in Phase Space

    Get PDF
    This work considers the problem of super-resolution. The goal is to resolve a Dirac distribution from knowledge of its discrete, low-pass, Fourier measurements. Classically, such problems have been dealt with parameter estimation methods. Recently, it has been shown that convex-optimization based formulations facilitate a continuous time solution to the super-resolution problem. Here we treat super-resolution from low-pass measurements in Phase Space. The Phase Space transformation parametrically generalizes a number of well known unitary mappings such as the Fractional Fourier, Fresnel, Laplace and Fourier transforms. Consequently, our work provides a general super- resolution strategy which is backward compatible with the usual Fourier domain result. We consider low-pass measurements of Dirac distributions in Phase Space and show that the super-resolution problem can be cast as Total Variation minimization. Remarkably, even though are setting is quite general, the bounds on the minimum separation distance of Dirac distributions is comparable to existing methods.Comment: 10 Pages, short paper in part accepted to ICASSP 201

    Low rank prior in single patches for non-pointwise impulse noise removal

    Get PDF
    corecore