148 research outputs found

    Classical System Theory Revisited for Turnpike in Standard State Space Systems and Impulse Controllable Descriptor Systems

    Get PDF
    The concept of turnpike connects the solution of long but finite time horizon optimal control problems with steady state optimal controls. A key ingredient of the analysis of the turnpike is the linear quadratic regulator problem and the convergence of the solution of the associated differential Riccati equation as the terminal time approaches infinity. This convergence has been investigated in linear systems theory in the 1980s. We extend classical system theoretic results for the investigation of turnpike properties of standard state space systems and descriptor systems. We present conditions for turnpike in the nondetectable case and for impulse controllable descriptor systems. For the latter, in line with the theory for standard linear systems, we establish existence and convergence of solutions to a generalized differential Riccati equation.Comment: 28 pages, 1 figur

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    On differential-algebraic control systems

    Get PDF
    In der vorliegenden Dissertation werden differential-algebraische Gleichungen (differential-algebraic equations, DAEs) der Form \ddt E x = Ax + f betrachtet, wobei EE und AA beliebige Matrizen sind. Falls EE nichtverschwindende Einträge hat, dann kommen in der Gleichung Ableitungen der entsprechenden Komponenten von xx vor. Falls EE eine Nullzeile hat, dann kommen in der entsprechenden Gleichung keine Ableitungen vor und sie ist rein algebraisch. Daher werden Gleichungen vom Typ \ddt E x = Ax + f differential-algebraische Gleichungen genannt. Ein Ziel dieser Dissertation ist es, eine strukturelle Zerlegung einer DAE in vier Teile herzuleiten: einen ODE-Anteil, einen nilpotenten Anteil, einen unterbestimmten Anteil und einen überbestimmten Anteil. Jeder Anteil beschreibt ein anderes Lösungsverhalten in Hinblick auf Existenz und Eindeutigkeit von Lösungen für eine vorgegebene Inhomogenität ff und Konsistenzbedingungen an ff. Die Zerlegung, namentlich die quasi-Kronecker Form (QKF), verallgemeinert die wohlbekannte Kronecker-Normalform und behebt einige ihrer Nachteile. Die QKF wird ausgenutzt, um verschiedene Konzepte der Kontrollierbarkeit und Stabilisierbarkeit für DAEs mit~f=Buf=Bu zu studieren. Hier bezeichnet uu den Eingang des differential-algebraischen Systems. Es werden Zerlegungen unter System- und Feedback-Äquivalenz, sowie die Folgen einer Behavioral-Steuerung Kxx+Kuu=0K_x x + K_u u = 0 für die Stabilisierung des Systems untersucht. Falls für das DAE-System zusätzlich eine Ausgangs-Gleichung y=Cxy=Cx gegeben ist, dann lässt sich das Konzept der Nulldynamik wie folgt definieren: die Nulldynamik ist, grob gesagt, die Dynamik, die am Ausgang nicht sichtbar ist, d.h. die Menge aller Lösungs-Trajektorien (x,u,y)(x,u,y) mit y=0y=0. Für rechts-invertierbare Systeme mit autonomer Nulldynamik wird eine Zerlegung hergeleitet, welche die Nulldynamik entkoppelt. Diese versetzt uns in die Lage, eine Behavior-Steuerung zu entwickeln, die das System stabilisiert, vorausgesetzt die Nulldynamik selbst ist stabil. Wir betrachten auch zwei Regelungs-Strategien, die von den Eigenschaften der oben genannten System-Klasse profitieren: Hochverstärkungs- und Funnel-Regelung. Ein System \ddt E x = Ax + Bu, y=Cxy=Cx, hat die Hochverstärkungseigenschaft, wenn es durch die Anwendung der proportionalen Ausgangsrückführung u=kyu=-ky, mit k>0k>0 hinreichend groß, stabilisiert werden kann. Wir beweisen, dass rechts-invertierbare Systeme mit asymptotisch stabiler Nulldynamik, die eine bestimmte Relativgrad-Annahme erfüllen, die Hochverstärkungseigenschaft haben. Während der Hochverstärkungs-Regler recht einfach ist, ist es jedoch a priori nicht bekannt, wie groß die Verstärkungskonstante kk gewählt werden muss. Dieses Problem wird durch den Funnel-Regler gelöst: durch die adaptive Justierung der Verstärkung über eine zeitabhängige Funktion k()k(\cdot) und die Ausnutzung der Hochverstärkungseigenschaft wird erreicht, dass große Werte k(t)k(t) nur dann angenommen werden, wenn sie nötig sind. Eine weitere wesentliche Eigenschaft ist, dass der Funnel-Regler das transiente Verhalten des Fehlers e=yyrefe=y-y_{\rm ref} der Bahnverfolgung, wobei yrefy_{\rm ref} die Referenztrajektorie ist, beachtet. Für einen vordefinierten Performanz-Trichter (funnel) ψ\psi wird erreicht, dass e(t)<ψ(t)\|e(t)\|<\psi(t). Schließlich wird der Funnel-Regler auf die Klasse von MNA-Modellen von passiven elektrischen Schaltkreisen mit asymptotisch stabilen invarianten Nullstellen angewendet. Dies erfordert die Einschränkung der Menge der zulässigen Referenztrajektorien auf solche die, in gewisser Weise, die Kirchhoffschen Gesetze punktweise erfüllen.In this dissertation we study differential-algebraic equations (DAEs) of the form Ex'=Ax+f. One aim of the thesis is to derive the quasi-Kronecker form (QKF), which decomposes the DAE into four parts: the ODE part, nilpotent part, underdetermined part and overdetermined part. Each part describes a different solution behavior. The QKF is exploited to study the different controllability and stabilizability concepts for DAEs with f=Bu, where u is the input of the system. Feedback decompositions, behavioral control and stabilization are investigated. For DAE systems with output equation y=Cx, we may define the concept of zero dynamics, which are those dynamics that are not visible at the output. For right-invertible systems with autonomous zero dynamics a decomposition is derived, which decouples the zero dynamics of the system and allows for high-gain and funnel control. It is shown, that the funnel controller achieves tracking of a reference trajectory by the output signal with prescribed transient behavior. Finally, the funnel controller is applied to the class of MNA models of passive electrical circuits with asymptotically stable invariant zeros

    Estimation and control of non-linear and hybrid systems with applications to air-to-air guidance

    Get PDF
    Issued as Progress report, and Final report, Project no. E-21-67

    Optimal Sensing and Actuation Policies for Networked Mobile Agents in a Class of Cyber-Physical Systems

    Get PDF
    The main purpose of this dissertation is to define and solve problems on optimal sensing and actuating policies in Cyber-Physical Systems (CPSs). Cyber-physical system is a term that was introduced recently to define the increasing complexity of the interactions between computational hardwares and their physical environments. The problem of designing the ``cyber\u27\u27 part may not be trivial but can be solved from scratch. However, the ``physical\u27\u27 part, usually a natural physical process, is inherently given and has to be identified in order to propose an appropriate ``cyber\u27\u27 part to be adopted. Therefore, one of the first steps in designing a CPS is to identify its ``physical\u27\u27 part. The ``physical\u27\u27 part can belong to a large array of system classes. Among the possible candidates, we focus our interest on Distributed Parameter Systems (DPSs) whose dynamics can be modeled by Partial Differential Equations (PDE). DPSs are by nature very challenging to observe as their states are distributed throughout the spatial domain of interest. Therefore, systematic approaches have to be developed to obtain the optimal locations of sensors to optimally estimate the parameters of a given DPS. In this dissertation, we first review the recent methods from the literature as the foundations of our contributions. Then, we define new research problems within the above optimal parameter estimation framework. Two different yet important problems considered are the optimal mobile sensor trajectory planning and the accuracy effects and allocation of heterogeneous sensors. Under the remote sensing setting, we are able to determine the optimal trajectories of remote sensors. The problem of optimal robust estimation is then introduced and solved using an interlaced ``online\u27\u27 or ``real-time\u27\u27 scheme. Actuation policies are introduced into the framework to improve the estimation by providing the best stimulation of the DPS for optimal parameter identification, where trajectories of both sensors and actuators are optimized simultaneously. We also introduce a new methodology to solving fractional-order optimal control problems, with which we demonstrate that we can solve optimal sensing policy problems when sensors move in complex media, displaying fractional dynamics. We consider and solve the problem of optimal scale reconciliation using satellite imagery, ground measurements, and Unmanned Aerial Vehicles (UAV)-based personal remote sensing. Finally, to provide the reader with all the necessary background, the appendices contain important concepts and theorems from the literature as well as the Matlab codes used to numerically solve some of the described problems

    Control Engineering

    Get PDF
    Control means a speci?c action to reach the desired behavior of a system. In the control of industrial processes generally technological processes, are considered, but control is highly required to keep any physical, chemical, biological, communication, economic, or social process functioning in a desired manner
    corecore