21 research outputs found

    Efficient physics-based room-acoustics modeling and auralization

    Get PDF
    The goal of this research is to develop efficient algorithms for physics-based room acoustics modeling and real-time auralization. Given the room geometry and wall materials, in addition to listener and sound source positions and other properties, the auralization system aims at reproducing the sound as would be heard by the listener in a corresponding physical setup. A secondary goal is to predict the room acoustics parameters reliably. The thesis presents a new algorithm for room acoustics modeling. The acoustic radiance transfer method is an element-based algorithm which models the energy transfer in the room like the acoustic radiosity technique, but is capable of modeling arbitrary local reflections defined as bidirectional reflectance distribution functions. Implementing real-time auralization requires efficient room acoustics modeling. This thesis presents three approaches for improving the speed of the modeling process. First, the room geometry can be reduced. For this purpose an algorithm, based on volumetric decomposition and reconstructions of the surface, is described. The algorithm is capable of simplifying the topology of the model and it is shown that the acoustical properties of the room are sufficiently well preserved with even 80 % reduction rates in typical room models. Second, some of the data required for room acoustics modeling can be precomputed. It is shown that in the beam tracing algorithm a visibility structure called "beam tree" can be precomputed efficiently, allowing even moving sound sources in simple cases. In the acoustic radiance transfer method, effects of the room geometry can be precomputed. Third, the run-time computation can be optimized. The thesis describes two optimization techniques for the beam tracing algorithm which are shown to speed up the process by two orders of magnitude. On the other hand, performing the precomputation for the acoustic radiance transfer method in the frequency domain allows a very efficient implementation of the final phase of the modeling on the graphics processing unit. An interactive auralization system, based on this technique is presented

    Portal-based sound propagation for first-person computer games

    Get PDF
    First-person computer games are a popular modern video game genre. A new method is proposed, the Directional Propagation Cache, that takes adavntage of the very common portal spatial subdivision method to accelerate environmental acoustics simulation for first-person games, by caching sound propagation information between portals

    Interactive Sound Propagation for Massive Multi-user and Dynamic Virtual Environments

    Get PDF
    Hearing is an important sense and it is known that rendering sound effects can enhance the level of immersion in virtual environments. Modeling sound waves is a complex problem, requiring vast computing resources to solve accurately. Prior methods are restricted to static scenes or limited acoustic effects. In this thesis, we present methods to improve the quality and performance of interactive geometric sound propagation in dynamic scenes and precomputation algorithms for acoustic propagation in enormous multi-user virtual environments. We present a method for finding edge diffraction propagation paths on arbitrary 3D scenes for dynamic sources and receivers. Using this algorithm, we present a unified framework for interactive simulation of specular reflections, diffuse reflections, diffraction scattering, and reverberation effects. We also define a guidance algorithm for ray tracing that responds to dynamic environments and reorders queries to minimize simulation time. Our approach works well on modern GPUs and can achieve more than an order of magnitude performance improvement over prior methods. Modern multi-user virtual environments support many types of client devices, and current phones and mobile devices may lack the resources to run acoustic simulations. To provide such devices the benefits of sound simulation, we have developed a precomputation algorithm that efficiently computes and stores acoustic data on a server in the cloud. Using novel algorithms, the server can render enhanced spatial audio in scenes spanning several square kilometers for hundreds of clients in realtime. Our method provides the benefits of immersive audio to collaborative telephony, video games, and multi-user virtual environments.Doctor of Philosoph

    Topological Sound Propagation with Reverberation Graphs

    Get PDF
    International audienceReverberation graphs is a novel approach to estimate global soundpressure decay and auralize corresponding reverberation effects in interactive virtual environments. We use a 3D model to represent the geometry of the environment explicitly, and we subdivide it into a series of coupled spaces connected by portals. Off-line geometrical-acoustics techniques are used to precompute transport operators, which encode pressure decay characteristics within each space and between coupling interfaces. At run-time, during an interactive simulation, we traverse the adjacency graph corresponding to the spatial subdivision of the environment. We combine transport operators along different sound propagation routes to estimate the pressure decay envelopes from sources to the listener. Our approach compares well with off-line geometrical techniques, but computes reverberation decay envelopes at interactive rates, ranging from 12 to 100 Hz. We propose a scalable artificial reverberator that uses these decay envelopes to auralize reverberation effects, including room coupling. Our complete system can render as many as 30 simultaneous sources in large dynamic virtual environments

    Interactive Rendering of Scattering and Refraction Effects in Heterogeneous Media

    Get PDF
    In this dissertation we investigate the problem of interactive and real-time visualization of single scattering, multiple scattering and refraction effects in heterogeneous volumes. Our proposed solutions span a variety of use scenarios: from a very fast yet physically-based approximation to a physically accurate simulation of microscopic light transmission. We add to the state of the art by introducing a novel precomputation and sampling strategy, a system for efficiently parallelizing the computation of different volumetric effects, and a new and fast version of the Discrete Ordinates Method. Finally, we also present a collateral work on real-time 3D acquisition devices

    Efficient geometric sound propagation using visibility culling

    Get PDF
    Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying efficient audio-processing algorithms. We also present the first efficient audio-processing algorithm for scenarios with simultaneously moving source and moving receiver (MS-MR) which incurs less than 25% overhead compared to static source and moving receiver (SS-MR) or moving source and static receiver (MS-SR) scenario

    Interactive physically-based sound simulation

    Get PDF
    The realization of interactive, immersive virtual worlds requires the ability to present a realistic audio experience that convincingly compliments their visual rendering. Physical simulation is a natural way to achieve such realism, enabling deeply immersive virtual worlds. However, physically-based sound simulation is very computationally expensive owing to the high-frequency, transient oscillations underlying audible sounds. The increasing computational power of desktop computers has served to reduce the gap between required and available computation, and it has become possible to bridge this gap further by using a combination of algorithmic improvements that exploit the physical, as well as perceptual properties of audible sounds. My thesis is a step in this direction. My dissertation concentrates on developing real-time techniques for both sub-problems of sound simulation: synthesis and propagation. Sound synthesis is concerned with generating the sounds produced by objects due to elastic surface vibrations upon interaction with the environment, such as collisions. I present novel techniques that exploit human auditory perception to simulate scenes with hundreds of sounding objects undergoing impact and rolling in real time. Sound propagation is the complementary problem of modeling the high-order scattering and diffraction of sound in an environment as it travels from source to listener. I discuss my work on a novel numerical acoustic simulator (ARD) that is hundred times faster and consumes ten times less memory than a high-accuracy finite-difference technique, allowing acoustic simulations on previously intractable spaces, such as a cathedral, on a desktop computer. Lastly, I present my work on interactive sound propagation that leverages my ARD simulator to render the acoustics of arbitrary static scenes for multiple moving sources and listener in real time, while accounting for scene-dependent effects such as low-pass filtering and smooth attenuation behind obstructions, reverberation, scattering from complex geometry and sound focusing. This is enabled by a novel compact representation that takes a thousand times less memory than a direct scheme, thus reducing memory footprints to within available main memory. To the best of my knowledge, this is the only technique and system in existence to demonstrate auralization of physical wave-based effects in real-time on large, complex 3D scenes
    corecore