5,833 research outputs found

    Improving Voltage Control in MV Smart Grids

    Get PDF

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de Economía y Competitividad ENE2017-84813-RUnión Europea (Programa Horizonte 2020) 76409

    Smart grid architecture for rural distribution networks: application to a Spanish pilot network

    Get PDF
    This paper presents a novel architecture for rural distribution grids. This architecture is designed to modernize traditional rural networks into new Smart Grid ones. The architecture tackles innovation actions on both the power plane and the management plane of the system. In the power plane, the architecture focuses on exploiting the synergies between telecommunications and innovative technologies based on power electronics managing low scale electrical storage. In the management plane, a decentralized management system is proposed based on the addition of two new agents assisting the typical Supervisory Control And Data Acquisition (SCADA) system of distribution system operators. Altogether, the proposed architecture enables operators to use more effectively—in an automated and decentralized way—weak rural distribution systems, increasing the capability to integrate new distributed energy resources. This architecture is being implemented in a real Pilot Network located in Spain, in the frame of the European Smart Rural Grid project. The paper also includes a study case showing one of the potentialities of one of the principal technologies developed in the project and underpinning the realization of the new architecture: the so-called Intelligent Distribution Power Router.Postprint (published version

    Detection of Non-Technical Losses in Smart Distribution Networks: a Review

    Get PDF
    With the advent of smart grids, distribution utilities have initiated a large deployment of smart meters on the premises of the consumers. The enormous amount of data obtained from the consumers and communicated to the utility give new perspectives and possibilities for various analytics-based applications. In this paper the current smart metering-based energy-theft detection schemes are reviewed and discussed according to two main distinctive categories: A) system statebased, and B) arti cial intelligence-based.Comisión Europea FP7-PEOPLE-2013-IT

    Supporting transient stability in future highly distributed power systems

    Get PDF
    Incorporating a substantial volume of microgeneration (consumer-led rather than centrally planed) within a system that is not designed for such a paradigm could lead to conflicts in the operating strategies of the new and existing centralised generation technologies. So it becomes vital for such substantial amounts of microgeneration among other decentralised resources to be controlled in the way that the aggregated response will support the wider system. In addition, the characteristic behaviour of such populations requires to be understood under different system conditions to ascertain measures of risk and resilience. Therefore, this paper provides two main contributions: firstly, conceptual control for a system incorporating a high penetration of microgeneration and dynamic load, termed a Highly Distributed Power System (HDPS), is proposed. Secondly, a technical solution that can support enhanced transient stability in such a system is evaluated and demonstrated

    Choice of State Estimation Solution Process for Medium Voltage Distribution Systems

    Get PDF
    As distribution networks are turning into active systems, enhanced observability and continuous monitoring becomes essential for effective management and control. The state estimation (SE) tool is therefore now considered as the core component in future distribution management systems. The development of a novel distribution system SE tool is required to accommodate small to very large networks, operable with limited real time measurements and able to execute the computation of large volumes of data in a limited time frame. In this context, the paper investigates the computation time and voltage estimation qualities of three different SE optimization solution methods in order to evaluate their effectiveness as potential distribution SE candidate solutions

    Improving the Performance of Low Voltage Networks by an Optimized Unbalance Operation of Three-Phase Distributed Generators

    Get PDF
    This work focuses on using the full potential of PV inverters in order to improve the efficiency of low voltage networks. More specifically, the independent per-phase control capability of PV three-phase four-wire inverters, which are able to inject different active and reactive powers in each phase, in order to reduce the system phase unbalance is considered. This new operational procedure is analyzed by raising an optimization problem which uses a very accurate modelling of European low voltage networks. The paper includes a comprehensive quantitative comparison of the proposed strategy with two state-of-the-art methodologies to highlight the obtained benefits. The achieved results evidence that the proposed independent per-phase control of three-phase PV inverters improves considerably the network performance contributing to increase the penetration of renewable energy sources.Ministerio de Economía y Competitividad ENE2017-84813-R, ENE2014-54115-
    corecore