13,769 research outputs found

    Who are Like-minded: Mining User Interest Similarity in Online Social Networks

    Full text link
    In this paper, we mine and learn to predict how similar a pair of users' interests towards videos are, based on demographic (age, gender and location) and social (friendship, interaction and group membership) information of these users. We use the video access patterns of active users as ground truth (a form of benchmark). We adopt tag-based user profiling to establish this ground truth, and justify why it is used instead of video-based methods, or many latent topic models such as LDA and Collaborative Filtering approaches. We then show the effectiveness of the different demographic and social features, and their combinations and derivatives, in predicting user interest similarity, based on different machine-learning methods for combining multiple features. We propose a hybrid tree-encoded linear model for combining the features, and show that it out-performs other linear and treebased models. Our methods can be used to predict user interest similarity when the ground-truth is not available, e.g. for new users, or inactive users whose interests may have changed from old access data, and is useful for video recommendation. Our study is based on a rich dataset from Tencent, a popular service provider of social networks, video services, and various other services in China

    iTrace: An Implicit Trust Inference Method for Trust-aware Collaborative Filtering

    Full text link
    The growth of Internet commerce has stimulated the use of collaborative filtering (CF) algorithms as recommender systems. A collaborative filtering (CF) algorithm recommends items of interest to the target user by leveraging the votes given by other similar users. In a standard CF framework, it is assumed that the credibility of every voting user is exactly the same with respect to the target user. This assumption is not satisfied and thus may lead to misleading recommendations in many practical applications. A natural countermeasure is to design a trust-aware CF (TaCF) algorithm, which can take account of the difference in the credibilities of the voting users when performing CF. To this end, this paper presents a trust inference approach, which can predict the implicit trust of the target user on every voting user from a sparse explicit trust matrix. Then an improved CF algorithm termed iTrace is proposed, which takes advantage of both the explicit and the predicted implicit trust to provide recommendations with the CF framework. An empirical evaluation on a public dataset demonstrates that the proposed algorithm provides a significant improvement in recommendation quality in terms of mean absolute error (MAE).Comment: 6 pages, 4 figures, 1 tabl

    Graph Convolutional Neural Networks for Web-Scale Recommender Systems

    Full text link
    Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.Comment: KDD 201
    • …
    corecore