15,958 research outputs found

    37 Million Compilations: Investigating Novice Programming Mistakes in Large-Scale Student Data

    Get PDF
    Previous investigations of student errors have typically focused on samples of hundreds of students at individual institutions. This work uses a year's worth of compilation events from over 250,000 students all over the world, taken from the large Blackbox data set. We analyze the frequency, time-to-fix, and spread of errors among users, showing how these factors inter-relate, in addition to their development over the course of the year. These results can inform the design of courses, textbooks and also tools to target the most frequent (or hardest to fix) errors

    The C++0x "Concepts" Effort

    Full text link
    C++0x is the working title for the revision of the ISO standard of the C++ programming language that was originally planned for release in 2009 but that was delayed to 2011. The largest language extension in C++0x was "concepts", that is, a collection of features for constraining template parameters. In September of 2008, the C++ standards committee voted the concepts extension into C++0x, but then in July of 2009, the committee voted the concepts extension back out of C++0x. This article is my account of the technical challenges and debates within the "concepts" effort in the years 2003 to 2009. To provide some background, the article also describes the design space for constrained parametric polymorphism, or what is colloquially know as constrained generics. While this article is meant to be generally accessible, the writing is aimed toward readers with background in functional programming and programming language theory. This article grew out of a lecture at the Spring School on Generic and Indexed Programming at the University of Oxford, March 2010

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Frame-Based Editing: Easing the Transition from Blocks to Text-Based Programming

    Get PDF
    Block-based programming systems, such as Scratch or Alice, are the most popular environments for introducing young children to programming. However, mastery of text-based programming continues to be the educational goal for stu- dents who continue to program into their teenage years and beyond. Transitioning across the significant gap between the two editing styles presents a difficult challenge in school- level teaching of programming. We propose a new style of program manipulation to bridge the gap: frame-based edit- ing. Frame-based editing has the resistance to errors and approachability of block-based programming while retaining the flexibility and more conventional programming seman- tics of text-based programming languages. In this paper, we analyse the issues involved in the transition from blocks to text and argue that they can be overcome by using frame- based editing as an intermediate step. A design and imple- mentation of a frame-based editor is provided

    Linguistic Reflection in Java

    Get PDF
    Reflective systems allow their own structures to be altered from within. Here we are concerned with a style of reflection, called linguistic reflection, which is the ability of a running program to generate new program fragments and to integrate these into its own execution. In particular we describe how this kind of reflection may be provided in the compiler-based, strongly typed object-oriented programming language Java. The advantages of the programming technique include attaining high levels of genericity and accommodating system evolution. These advantages are illustrated by an example taken from persistent programming which shows how linguistic reflection allows functionality (program code) to be generated on demand (Just-In-Time) from a generic specification and integrated into the evolving running program. The technique is evaluated against alternative implementation approaches with respect to efficiency, safety and ease of use.Comment: 25 pages. Source code for examples at http://www-ppg.dcs.st-and.ac.uk/Java/ReflectionExample/ Dynamic compilation package at http://www-ppg.dcs.st-and.ac.uk/Java/DynamicCompilation
    • …
    corecore