280 research outputs found

    A Unified End-to-End Communication Paradigm for Heterogeneous Networks

    Get PDF
    The aim of this thesis research is to develop a unified communication paradigm that provides an end-to-end bursting model across heterogeneous realms. This model generates end-to-end bursts, thereby eliminating edge node burst assembly and its effect on TCP performance. Simulation models are developed in ns-2 to validate this work by comparing it with edge burst assembly on OBS networks. Analysis shows improved end-to-end performance for a variety of burst sizes, timeouts, and other network parameters

    Node design in optical packet switched networks

    Get PDF

    A new adaptive burst assembly algorithm for OBS networks considering capacity of control plane

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2008.Thesis (Master's) -- Bilkent University, 2008.Includes bibliographical references leaves 55-57.Recent developments in wavelength-division multiplexing (WDM) technology increase the amount of bandwidth available in fiber links by many orders of magnitude. However, this increase in link capacities is limited by the conventional electronic router’s capability. Optical burst switching (OBS) has been proposed as a promising and a short-term solution for switching technology to take advantage of increased capacity of optical links. The congestion in OBS control plane and the adaptive burst assembly algorithms are two important research topics that are among the most effective factors determining the performance of OBS networks. These two problems have been separately studied in the literature so far. It has been shown that contending bursts at a core optical switch in an OBS network may experience unfair loss rates based on their residual off- set times and burst lengths, that are called path length priority effect (PLPE) and burst length priority effect (BLPE), respectively. In this thesis, we propose a new adaptive timer-based burst assembly algorithm (ATBA) which uses loss rate measurements for determining the burstification delays of traffic streams in order to mitigate the undesired effects of PLPE and BLPE. ATBA distributes the burst generation rates of traffic streams at an ingress node such that total rate of generated bursts is constant in order to constrain the congestion in the control plane. Without ATBA, the fairness index drops to 76% when per hop processing delay (PHPD) is increasing. With ATBA, the fairness index drops only to 85% with increasing PHPD. It is also shown that the total goodput of the OBS network improves by 5% compared with the case without ATBA.Çırak, İsmailM.S

    Performance issues in optical burst/packet switching

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01524-3_8This chapter summarises the activities on optical packet switching (OPS) and optical burst switching (OBS) carried out by the COST 291 partners in the last 4 years. It consists of an introduction, five sections with contributions on five different specific topics, and a final section dedicated to the conclusions. Each section contains an introductive state-of-the-art description of the specific topic and at least one contribution on that topic. The conclusions give some points on the current situation of the OPS/OBS paradigms

    Network Performance Improvements for Low-Latency Anonymity Networks

    Get PDF
    While advances to the Internet have enabled users to easily interact and exchange information online, they have also created several opportunities for adversaries to prey on users’ private information. Whether the motivation for data collection is commercial, where service providers sell data for marketers, or political, where a government censors, blocks and tracks its people, or even personal, for cyberstalking purposes, there is no doubt that the consequences of personal information leaks can be severe. Low-latency anonymity networks have thus emerged as a solution to allow people to surf the Internet without the fear of revealing their identities or locations. In order to provide anonymity to users, anonymity networks route users’ traffic through several intermediate relays, which causes unavoidable extra delays. However, although these networks have been originally designed to support interactive applications, due to a variety of design weaknesses, these networks offer anonymity at the expense of further intolerable performance costs, which disincentivize users from adopting these systems. In this thesis, we seek to improve the network performance of low-latency anonymity networks while maintaining the anonymity guarantees they provide to users today. As an experimentation platform, we use Tor, the most widely used privacy-preserving network that empowers people with low-latency anonymous online access. Since its introduction in 2003, Tor has successfully evolved to support hundreds of thousands of users using thousands of volunteer-operated routers run all around the world. Incidents of sudden increases in Tor’s usage, coinciding with global political events, confirm the importance of the Tor network for Internet users today. We identify four key contributors to the performance problems in low-latency anonymity networks, exemplified by Tor, that significantly impact the experience of low-latency application users. We first consider the lack of resources problem due to the resource-constrained routers, and propose multipath routing and traffic splitting to increase throughput and improve load balancing. Second, we explore the poor quality of service problem, which is exacerbated by the existence of bandwidth-consuming greedy applications in the network. We propose online traffic classification as a means of enabling quality of service for every traffic class. Next, we investigate the poor transport design problem and propose a new transport layer design for anonymous communication networks which addresses the drawbacks of previous proposals. Finally, we address the problem of the lack of congestion control by proposing an ATM-style credit-based hop-by-hop flow control algorithm which caps the queue sizes and allows all relays to react to congestion in the network. Our experimental results confirm the significant performance benefits that can be obtained using our privacy-preserving approaches

    Transport Control Protocol (TCP) over Optical Burst Switched Networks

    Get PDF
    Transport Control Protocol (TCP) is the dominant protocol in modern communication networks, in which the issues of reliability, flow, and congestion control must be handled efficiently. This thesis studies the impact of the next-generation bufferless optical burst-switched (OBS) networks on the performance of TCP congestion-control implementations (i.e., dropping-based, explicit-notification-based, and delay-based). The burst contention phenomenon caused by the buffer-less nature of OBS occurs randomly and has a negative impact on dropping-based TCP since it causes a false indication of network congestion that leads to improper reaction on a burst drop event. In this thesis we study the impact of these random burst losses on dropping-based TCP throughput. We introduce a novel congestion control scheme for TCP over OBS networks, called Statistical Additive Increase Multiplicative Decrease (SAIMD). SAIMD maintains and analyzes a number of previous round trip times (RTTs) at the TCP senders in order to identify the confidence with which a packet-loss event is due to network congestion. The confidence is derived by positioning short-term RTT in the spectrum of long-term historical RTTs. The derived confidence corresponding to the packet loss is then taken in to account by the policy developed for TCP congestion-window adjustment. For explicit-notification TCP, we propose a new TCP implementation over OBS networks, called TCP with Explicit Burst Loss Contention Notification (TCP-BCL). We examine the throughput performance of a number of representative TCP implementations over OBS networks, and analyze the TCP performance degradation due to the misinterpretation of timeout and packet-loss events. We also demonstrate that the proposed TCP-BCL scheme can counter the negative effect of OBS burst losses and is superior to conventional TCP architectures in OBS networks. For delay-based TCP, we observe that this type of TCP implementation cannot detect network congestion when deployed over typical OBS networks since RTT fluctuations are minor. Also, delay-based TCP can suffer from falsely detecting network congestion when the underlying OBS network provides burst retransmission and/or deflection. Due to the fact that burst retransmission and deflection schemes introduce additional delays for bursts that are retransmitted or deflected, TCP cannot determine whether this sudden delay is due to network congestion or simply to burst recovery at the OBS layer. In this thesis we study the behaviour of delay-based TCP Vegas over OBS networks, and propose a version of threshold-based TCP Vegas that is suitable for the characteristics of OBS networks. The threshold-based TCP Vegas is able to distinguish increases in packet delay due to network congestion from burst contention at low traffic loads. The evolution of OBS technology is highly coupled with its ability to support upper-layer applications. Without fully understanding the burst transmission behaviour and the associated impact on the TCP congestion-control mechanism, it will be difficult to exploit the advantages of OBS networks fully

    Satellite Networks: Architectures, Applications, and Technologies

    Get PDF
    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled
    • …
    corecore