2,616 research outputs found

    From 4D medical images (CT, MRI, and Ultrasound) to 4D structured mesh models of the left ventricular endocardium for patient-specific simulations

    Get PDF
    With cardiovascular disease (CVD) remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD) simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time) with 1-to-l vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT) by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume

    Aerated blast furnace slag filters for enhanced nitrogen and phosphorus removal from small wastewater treatment plants

    Get PDF
    Rock filters (RF) are a promising alternative technology for natural wastewater treatment for upgrading WSP effluent. However, the application of RF in the removal of eutrophic nutrients, nitrogen and phosphorus, is very limited. Accordingly, the overall objective of this study was to develop a lowcost RF system for the purpose of enhanced nutrient removal from WSP effluents, which would be able to produce effluents which comply with the requirements of the EU Urban Waste Water Treatment Directive (UWWTD) (911271lEEC) and suitable for small communities. Therefore, a combination system comprising a primary facultative pond and an aerated rock filter (ARF) system-either vertically or horizontally loaded-was investigated at the University of Leeds' experimental station at Esholt Wastewater Treatment Works, Bradford, UK. Blast furnace slag (BFS) and limestone were selected for use in the ARF system owing to their high potential for P removal and their low cost. This study involved three major qperiments: (1) a comparison of aerated vertical-flow and horizontal-flow limestone filters for nitrogen removal; (2) a comparison of aerated limestone + blast furnace slag (BFS) filter and aerated BFS filters for nitrogen and phosphorus removal; and (3) a comparison of vertical-flow and horizontal-flow BFS filters for nitrogen and phosphorus removal. The vertical upward-flow ARF system was found to be superior to the horizontal-flow ARF system in terms of nitrogen removal, mostly thiough bacterial nitrification processes in both the aerated limestone and BFS filter studies. The BFS filter medium (whieh is low-cost) showed a much higher potential in removing phosphortls from pond effluent than the limestone medium. As a result, the combination of a vertical upward-flow ARF system and an economical and effective P-removal filter medium, such as BFS, was found to be an ideal optionfor the total nutrient removal of both nitrogen and phosphorus from wastewater. In parallel with these experiments, studies on the aerated BFS filter effective life and major in-filter phosphorus removal pathways were carried out. From the standard batch experiments of Pmax adsorption capacity of BFS, as well as six-month data collection of daily average P-removal, it was found that the effective life of the aerated BFS filter was 6.5 years. Scanning electron microscopy and X-ray diffraction spectrometric analyses on the surface of BFS, particulates and sediment samples revealed that the apparent mechanisms of P-removal in the filter are adsorption on the amorphous oxide phase of the BFS surface and precipitation within the filter

    A case study in hexahedral mesh generation: Simulation of the human mandible

    Get PDF
    We provide a case study for the generation of pure hexahedral meshes for the numerical simulation of physiological stress scenarios of the human mandible. Due to its complex and very detailed free-form geometry, the mandible model is very demanding. This test case is used as a running example to demonstrate the applicability of a combinatorial approach for the generation of hexahedral meshes by means of successive dual cycle eliminations, which has been proposed by the second author in previous work. We report on the progress and recent advances of the cycle elimination scheme. The given input data, a surface triangulation obtained from computed tomography data, requires a substantial mesh reduction and a suitable conversion into a quadrilateral surface mesh as a first step, for which we use mesh clustering and b-matching techniques. Several strategies for improved cycle elimination orders are proposed. They lead to a significant reduction in the mesh size and a better structural quality. Based on the resulting combinatorial meshes, gradient-based optimized smoothing with the condition number of the Jacobian matrix as objective together with mesh untangling techniques yielded embeddings of a satisfactory quality. To test our hexahedral meshes for the mandible model within an FEM simulation we used the scenario of a bite on a ‘hard nut.’ Our simulation results are in good agreement with observations from biomechanical experiments

    A Density Control Based Adaptive Hexahedral Mesh Generation Algorithm

    Get PDF
    A density control based adaptive hexahedral mesh generation algorithm for three dimensional models is presented in this paper. The first step of this algorithm is to identify the characteristic boundary of the solid model which needs to be meshed. Secondly, the refinement fields are constructed and modified according to the conformal refinement templates, and used as a metric to generate an initial grid structure. Thirdly, a jagged core mesh is generated by removing all the elements in the exterior of the solid model. Fourthly, all of the surface nodes of the jagged core mesh are matching to the surfaces of the model through a node projection process. Finally, the mesh quality such as topology and shape is improved by using corresponding optimization techniques

    Numerical modelling of the fluid-structure interaction in complex vascular geometries

    Get PDF
    A complex network of vessels is responsible for the transportation of blood throughout the body and back to the heart. Fluid mechanics and solid mechanics play a fundamental role in this transport phenomenon and are particularly suited for computer simulations. The latter may contribute to a better comprehension of the physiological processes and mechanisms leading to cardiovascular diseases, which are currently the leading cause of death in the western world. In case these computational models include patient-specific geometries and/or the interaction between the blood flow and the arterial wall, they become challenging to develop and to solve, increasing both the operator time and the computational time. This is especially true when the domain of interest involves vascular pathologies such as a local narrowing (stenosis) or a local dilatation (aneurysm) of the arterial wall. To overcome these issues of high operator times and high computational times when addressing the bio(fluid)mechanics of complex geometries, this PhD thesis focuses on the development of computational strategies which improve the generation and the accuracy of image-based, fluid-structure interaction (FSI) models. First, a robust procedure is introduced for the generation of hexahedral grids, which allows for local grid refinements and automation. Secondly, a straightforward algorithm is developed to obtain the prestress which is implicitly present in the arterial wall of a – by the blood pressure – loaded geometry at the moment of medical image acquisition. Both techniques are validated, applied to relevant cases, and finally integrated into a fluid-structure interaction model of an abdominal mouse aorta, based on in vivo measurements

    Numerical Modeling and Conjugate Heat Transfer Analysis of Single U-Tube Vertical Borehole Heat Exchangers

    Get PDF
    The primary purpose of this thesis was to develop a design for improving the efficiency of the vertical type single u-tube borehole heat exchanger. A thorough literature review of the various existing analytical and numerical models of the borehole heat exchanger (BHEs) was performed and numerical modeling of the BHE was conducted to solve the conjugate heat transfer problem in the BHE in 3D using ANSYS Fluent 2019 R1. A comparison between the results obtained using various mesh sizes, types, different turbulence models showed the independence of the parameters on the numerical simulation results. From the numerical simulation, it was evident that the outlet temperature of the fluid was dependent upon the residence time of the fluid inside the pipe. Keeping this in mind, a design change incorporating the addition of trapezoidal finned casing between the grout and the domain has been proposed to enhance the efficiency of the BHE. On performing numerical simulations, it was seen that the addition of fins improved the heat transfer characteristics of the BHE, thus proving the hypothesis to be true

    A parallel fully-coupled fluid-structure interaction simulation of a cerebral aneurysm

    Get PDF
    A parallel fully-coupled approach has been developed for the fluid-structure interaction problem in a cerebral artery with aneurysm. An Arbitrary Lagrangian-Eulerian formulation based on the side-centered unstructured finite volume method [2] is employed for the governing incompressible Navier-Stokes equations and the classical Galerkin finite element formulation is used to discretize the constitutive law for the Saint VenantKirchhoff material in a Lagrangian frame for the solid domain. A special attention is given to construct an algorithm with exact fluid mass/volume conservation while obeying the global discrete geometric conservation law (DGCL). The resulting large-scale algebraic linear equations are solved using a one-level restricted additive Schwarz preconditioner with a block-incomplete factorization within each partitioned sub-domains. The parallel implementation of the present fully coupled unstructured fluid-structure solver is based on the PETSc library for improving the efficiency of the parallel algorithm. The proposed numerical algorithm is applied to a complicated problem involving unsteady pulsatile blood flow in a cerebral artery with aneurysm as a realistic fluid-structure interaction problem encountered in biomechanics

    Novel mesh generation method for accurate image-based computational modelling of blood vessels

    Get PDF

    All‐hexahedral element meshing: automatic elimination of self‐intersecting dual lines

    Get PDF
    There has been some degree of success in all‐hexahedral meshing. Standard methods start with the object geometry defined by means of an all‐quadrilateral mesh, followed by the use of the combinatorial dual to the mesh in order to define the internal connectivities among elements. For all of the known methods using the dual concept, it is necessary to first prevent or eliminate self‐intersecting (SI) dual lines of the given quadrilateral mesh. The relevant features of SI lines are studied, giving a method to remove them, which avoids deforming the original geometry. Some examples of resulting meshes are shown where the current meshing method has been successfully applied.&nbsp
    corecore