726 research outputs found

    Spurious free dynamic range for a digitizing array

    Get PDF
    The paper addresses the problem of improving the spurious free dynamic range (SFDR) for digitization by use of sensor arrays. Nonlinearities in the analog-to-digital conversion process give rise to spurious signals (harmonics and intermodulation products) that limit the overall SFDR of the digitization process. When the signal of interest arises from a sensor, such as an antenna or hydrophone, the paper addresses the question of whether array processing (i.e., use of multiple sensors) can improve the resulting SFDR at the beamformer output. The paper argues that significant improvements can be obtained using linear, or more effectively, optimal (minimum variance distortionless response) beamforming.White, L.B.; Feng Rice and Angus Massi

    The design and implementation of a wideband digital radio receiver

    Get PDF
    Historically radio has been implemented using largely analogue circuitry. Improvements in mixed signal and digital signal processing technology are rapidly leading towards a largely digital approach, with down-conversion and filtering moving to the digital signal processing domain. Advantages of this technology include increased performance and functionality, as well as reduced cost. Wideband receivers place the heaviest demands on both mixed signal and digital signal processing technology, requiring high spurious free dynamic range (SFDR) and signal processing bandwidths. This dissertation investigates the extent to which current digital technology is able to meet these demands and compete with the proven architectures of analogue receivers. A scalable generalised digital radio receiver capable of operating in the HF and VHF bands was designed, implemented and tested, yielding instantaneous bandwidths in excess of 10 MHz with a spurious-free dynamic range exceeding 80 decibels below carrier (dBc). The results achieved reflect favourably on the digital receiver architecture. While the necessity for minimal analogue circuitry will possibly always exist, digital radio architectures are currently able to compete with analogue counterparts. The digital receiver is simple to manufacture, based on the use of largely commercial off-the-shelf (COTS) components, and exhibits extreme flexibility and high performance when compared with comparably priced analogue receivers

    Suitability of a commercial software defined radio system for passive coherent location

    Get PDF
    Includes abstract. Includes bibliographical references (leaves 98-99)

    Edge detection for semantically based early visual processing

    Get PDF

    The Design of an Anti-Aliasing Filter for the Next Generation Digitiser

    Get PDF
    MeerKAT, is a 64-element radio astronomy antenna array which has been recently constructed in the Northern Cape Province of South Africa. It serves as South Africa's contribution towards the international Square Kilometre Array (SKA) project. The MeerKAT array has been designed to observe radio signals produced by celestial sources at UHF-Band, L-Band, S-Band and X-Band frequencies. The first phase of the construction included the design, development and integration of the UHF-Band, L-Band and S-band Receivers, whilst the X-band design has been superseded by the incorporation of the next phase of the SKA international project. In preparation of the next the roll-out, research is required to determine optimal wideband filter topologies suitable for direct digitisation of signal frequencies over the frequency range of 3-6 GHz. In this thesis, exploration of suitable wideband planar filters is performed, noting those with an improved out-of-band rejection. The outcome of the investigation leads into the design and development of the suitable wideband planar filter based on key performance specifications. The performance of the manufactured wideband planar filter is then compared to the theoretical design, and validated against the key performance requirements

    Development of a Full-Field Time-of-Flight Range Imaging System

    Get PDF
    A full-field, time-of-flight, image ranging system or 3D camera has been developed from a proof-of-principle to a working prototype stage, capable of determining the intensity and range for every pixel in a scene. The system can be adapted to the requirements of various applications, producing high precision range measurements with sub-millimetre resolution, or high speed measurements at video frame rates. Parallel data acquisition at each pixel provides high spatial resolution independent of the operating speed. The range imaging system uses a heterodyne technique to indirectly measure time of flight. Laser diodes with highly diverging beams are intensity modulated at radio frequencies and used to illuminate the scene. Reflected light is focused on to an image intensifier used as a high speed optical shutter, which is modulated at a slightly different frequency to that of the laser source. The output from the shutter is a low frequency beat signal, which is sampled by a digital video camera. Optical propagation delay is encoded into the phase of the beat signal, hence from a captured time variant intensity sequence, the beat signal phase can be measured to determine range for every pixel in the scene. A direct digital synthesiser (DDS) is designed and constructed, capable of generating up to three outputs at frequencies beyond 100 MHz with the relative frequency stability in excess of nine orders of magnitude required to control the laser and shutter modulation. Driver circuits were also designed to modulate the image intensifier photocathode at 50 Vpp, and four laser diodes with a combined power output of 320 mW, both over a frequency range of 10-100 MHz. The DDS, laser, and image intensifier response are characterised. A unique method of measuring the image intensifier optical modulation response is developed, requiring the construction of a pico-second pulsed laser source. This characterisation revealed deficiencies in the measured responses, which were mitigated through hardware modifications where possible. The effects of remaining imperfections, such as modulation waveform harmonics and image intensifier irising, can be calibrated and removed from the range measurements during software processing using the characterisation data. Finally, a digital method of generating the high frequency modulation signals using a FPGA to replace the analogue DDS is developed, providing a highly integrated solution, reducing the complexity, and enhancing flexibility. In addition, a novel modulation coding technique is developed to remove the undesirable influence of waveform harmonics from the range measurement without extending the acquisition time. When combined with a proposed modification to the laser illumination source, the digital system can enhance range measurement precision and linearity. From this work, a flexible full-field image ranging system is successfully realised. The system is demonstrated operating in a high precision mode with sub-millimetre depth resolution, and also in a high speed mode operating at video update rates (25 fps), in both cases providing high (512 512) spatial resolution over distances of several metres
    corecore