3,231 research outputs found

    Simple method for sub-diffraction resolution imaging of cellular structures on standard confocal microscopes by three-photon absorption of quantum dots

    Get PDF
    This study describes a simple technique that improves a recently developed 3D sub-diffraction imaging method based on three-photon absorption of commercially available quantum dots. The method combines imaging of biological samples via tri-exciton generation in quantum dots with deconvolution and spectral multiplexing, resulting in a novel approach for multi-color imaging of even thick biological samples at a 1.4 to 1.9-fold better spatial resolution. This approach is realized on a conventional confocal microscope equipped with standard continuous-wave lasers. We demonstrate the potential of multi-color tri-exciton imaging of quantum dots combined with deconvolution on viral vesicles in lentivirally transduced cells as well as intermediate filaments in three-dimensional clusters of mouse-derived neural stem cells (neurospheres) and dense microtubuli arrays in myotubes formed by stacks of differentiated C2C12 myoblasts

    3D Architectural Analysis of Neurons, Astrocytes, Vasculature & Nuclei in the Motor and Somatosensory Murine Cortical Columns

    Get PDF
    Characterization of the complex cortical structure of the brain at a cellular level is a fundamental goal of neuroscience which can provide a better understanding of both normal function as well as disease state progression. Many challenges exist however when carrying out this form of analysis. Immunofluorescent staining is a key technique for revealing 3-dimensional structure, but subsequent fluorescence microscopy is limited by the quantity of simultaneous targets that can be labeled and intrinsic lateral and isotropic axial point-spread function (PSF) blurring during the imaging process in a spectral and depth-dependent manner. Even after successful staining, imaging and optical deconvolution, the sheer density of filamentous processes in the neuropil significantly complicates analysis due to the difficulty of separating individual cells in a highly interconnected network of tightly woven cellular arbors. In order to solve these problems, a variety of methodologies were developed and validated for improved analysis of cortical anatomy. An enhanced immunofluorescent staining and imaging protocol was utilized to precisely locate specific functional regions within brain slices at high magnification and collect four-channel, complete cortical columns. A powerful deconvolution routine was established which collected depth variant PSFs using an optical phantom for image restoration. Fractional volume analysis (FVA) was used to provide preliminary data of the proportions of each stained component in order to statistically characterize the variability within and between the functional regions in a depth-dependent and depth-independent manner. Finally, using machine learning techniques, a supervised learning model was developed that could automatically classify neuronal and astrocytic nuclei within the large cortical column datasets based on perinuclear fluorescence. These annotated nuclei were then used as seed points within their corresponding fluorescent channel for cell individualization in a highly interconnected network. For astrocytes, this technique provides the first method for characterization of complex morphology in an automated fashion over large areas without laborious dye filling or manual tracing

    Towards many colors in FISH on 3D-preserved interphase nuclei

    Get PDF
    The article reviews the existing methods of multicolor FISH on nuclear targets, first of all, interphase chromosomes. FISH proper and image acquisition are considered as two related components of a single process. We discuss (1) M-FISH (combinatorial labeling + deconvolution + widefield microscopy); (2) multicolor labeling + SIM (structured illumination microscopy); (3) the standard approach to multicolor FISH + CLSM (confocal laser scanning microscopy; one fluorochrome - one color channel); (4) combinatorial labeling + CLSM; (5) non-combinatorial labeling + CLSM + linear unmixing. Two related issues, deconvolution of images acquired with CLSM and correction of data for chromatic Z-shift, are also discussed. All methods are illustrated with practical examples. Finally, several rules of thumb helping to choose an optimal labeling + microscopy combination for the planned experiment are suggested. Copyright (c) 2006 S. Karger AG, Basel

    Superresolution fluorescence microscopy with structured illumination

    Get PDF
    The resolution of a conventional fluorescence microscope image is diffraction limited which achieves a spatial resolution of 200nm lateral and 500nm axial. Recently, many superresolution fluorescence microscopy techniques have been developed which allow the observation of many biological structures beyond the diffraction limit. Structured illumination microscopy (SIM) is one of them. The principle of SIM is based on using a harmonic light grid which down modulates the high spatial frequencies of the sample into the observable region of the microscope. The resolution enhancement is highly dependent on the reconstruction technique, which restores the high spatial frequencies of the sample to their original position. Common SIM reconstructions require the perfect knowledge of the illumination pattern. However, to perfectly control the harmonic illumination patterns on the sample plane is not easy in experimental implementations and this makes the experimental setup very technical. Reconstructing SIM images assuming the perfect knowledge of the illumination intensity patterns may, therefore, introduce artifacts on the estimated sample due to the misalignment of the grid that can occur during experimental acquisitions. To tackle this drawback of SIM, in this these, we have developed blind-SIM reconstruction strategies which are independent of the illumination patterns. Using the 3D blind-SIM reconstruction strategies we extended the harmonic SIM to speckle illumination microscopy which uses random unknown speckle patterns that need no control, unlike the harmonic grid patterns. For harmonic-SIM images, since incorporating some information about illumination patterns is valuable, we have developed a 3D positive filtered blind-SIM reconstruction which confines the iterative estimation of the illuminations in the vicinity of the Fourier peaks (using carefully designed Fourier filter masks) in the Fourier space. Using blind-SIM reconstruction techniques a lateral resolution of about 100nm and axial resolution of about 200nm is obtained in both speckle and harmonic SIM. In addition, to reduce the out-of-focus problem in widefield images, a simple computational technique which is based on reconstructing 2D data with 3D PSF is developed based on blind-SIM reconstruction. Moreover, to combine the functionalities of SIM and light sheet microscopy, as a proof of concept, we have developed a simple microscope setup which produces a structured light sheet illumination pattern.La microscopie de fluorescence optique est l’un des outils les plus puissants pour Ă©tudier les structures cellulaires et molĂ©culaires au niveau subcellulaire. La rĂ©solution d’une image de microscope conventionnel Ă  fluorescence est limitĂ©e par la diffraction, ce qui permet d’obtenir une rĂ©solution spatiale latĂ©rale de 200nm et axiale de 500nm. RĂ©cemment, de nombreuses techniques de microscopie de fluorescence de super-rĂ©solution ont Ă©tĂ© dĂ©veloppĂ©es pour permettre d’observer de nombreuses structures biologiques au-delĂ  de la limite de diffraction. La microscopie d’illumination structurĂ©e (SIM) est l’une de ces technologies. Le principe de la SIM est basĂ© sur l’utilisation d’une grille de lumiĂšre harmonique qui permet de translater les hautes frĂ©quences spatiales de l’échantillon vers la rĂ©gion d’observation du microscope. L’amĂ©lioration de la rĂ©solution de cette technologie de microscopie dĂ©pend fortement de la technique de reconstruction, qui rĂ©tablit les hautes frĂ©quences spatiales de l’échantillon dans leur position d’origine. Les mĂ©thodes classiques de reconstruction SIM nĂ©cessitent une connaissance parfaite de l’illumination de l’échantillon. Cependant, l’implĂ©mentation d’un contrĂŽle parfait de l’illumination harmonique sur le plan de l’échantillon n’est pas facile expĂ©rimentalement et il prĂ©sente un grand dĂ©fi. L’hypothĂšse de la connaissance parfaite de l’intensitĂ© de la lumiĂšre illuminant l’échantillon en SIM peut donc introduire des artefacts sur l’image reconstruite de l’échantillon, Ă  cause des erreurs d’alignement de la grille qui peuvent se prĂ©senter lors de l’acquisition expĂ©rimentale. Afin de surmonter ce dĂ©fi, nous avons dĂ©veloppĂ© dans cette thĂšse des stratĂ©gies de reconstruction «aveugle» qui sont indĂ©pendantes de d’illumination. À l’aide de ces stratĂ©gies de reconstruction dites «blind-SIM», nous avons Ă©tendu la SIM harmonique pour l’appliquer aux cas de «SIM-speckle» qui utilisent des illuminations alĂ©atoires et inconnues qui contrairement Ă  l’illumination harmonique, ne nĂ©cessitent pas de controle. Comme il est utile de rĂ©cupĂ©rer des informations sur l’illumination en SIM harmonique, nous avons dĂ©veloppĂ© une reconstruction blind-SIM tridimensionnel et filtrĂ©e qui confine l’estimation itĂ©rative des illuminations au voisinage des pics dans l’espace de Fourier, en utilisant des masques de filtre de Fourier soigneusement conçus. En utilisant des techniques de reconstruction blind-SIM, une rĂ©solution latĂ©rale d’environ 100 nm et une rĂ©solution axiale d’environ 200 nm sont obtenues, Ă  la fois en SIM harmonique et en SIM speckle. En outre, pour rĂ©duire le problĂšme de focalisation dans les images de champ large, une technique de calcul simple qui repose sur la reconstruction bidimensionnel de donnĂ©es Ă  partir de PSF tridimensionnel est dĂ©veloppĂ©e. En outre, afin de combiner Ă  la fois les fonctionnalitĂ©s de la SIM et de la microscopie ĂĄ nappe de lumiĂšre, en tant que preuve de concept, nous avons dĂ©veloppĂ© une configuration de microscope simple qui produit une nappe de lumiĂšre structurĂ©

    Superresolution fluorescence microscopy with structured illumination

    Get PDF
    Cotutela Universitat PolitĂšcnica de Catalunya i Aix-Marseille UniversitĂ©The resolution of a conventional fluorescence microscope image is diffraction limited which achieves a spatial resolution of 200nm lateral and 500nm axial. Recently, many superresolution fluorescence microscopy techniques have been developed which allow the observation of many biological structures beyond the diffraction limit. Structured illumination microscopy (SIM) is one of them. The principle of SIM is based on using a harmonic light grid which down modulates the high spatial frequencies of the sample into the observable region of the microscope. The resolution enhancement is highly dependent on the reconstruction technique, which restores the high spatial frequencies of the sample to their original position. Common SIM reconstructions require the perfect knowledge of the illumination pattern. However, to perfectly control the harmonic illumination patterns on the sample plane is not easy in experimental implementations and this makes the experimental setup very technical. Reconstructing SIM images assuming the perfect knowledge of the illumination intensity patterns may, therefore, introduce artifacts on the estimated sample due to the misalignment of the grid that can occur during experimental acquisitions. To tackle this drawback of SIM, in this these, we have developed blind-SIM reconstruction strategies which are independent of the illumination patterns. Using the 3D blind-SIM reconstruction strategies we extended the harmonic SIM to speckle illumination microscopy which uses random unknown speckle patterns that need no control, unlike the harmonic grid patterns. For harmonic-SIM images, since incorporating some information about illumination patterns is valuable, we have developed a 3D positive filtered blind-SIM reconstruction which confines the iterative estimation of the illuminations in the vicinity of the Fourier peaks (using carefully designed Fourier filter masks) in the Fourier space. Using blind-SIM reconstruction techniques a lateral resolution of about 100nm and axial resolution of about 200nm is obtained in both speckle and harmonic SIM. In addition, to reduce the out-of-focus problem in widefield images, a simple computational technique which is based on reconstructing 2D data with 3D PSF is developed based on blind-SIM reconstruction. Moreover, to combine the functionalities of SIM and light sheet microscopy, as a proof of concept, we have developed a simple microscope setup which produces a structured light sheet illumination pattern.La microscopie de fluorescence optique est l’un des outils les plus puissants pour Ă©tudier les structures cellulaires et molĂ©culaires au niveau subcellulaire. La rĂ©solution d’une image de microscope conventionnel Ă  fluorescence est limitĂ©e par la diffraction, ce qui permet d’obtenir une rĂ©solution spatiale latĂ©rale de 200nm et axiale de 500nm. RĂ©cemment, de nombreuses techniques de microscopie de fluorescence de super-rĂ©solution ont Ă©tĂ© dĂ©veloppĂ©es pour permettre d’observer de nombreuses structures biologiques au-delĂ  de la limite de diffraction. La microscopie d’illumination structurĂ©e (SIM) est l’une de ces technologies. Le principe de la SIM est basĂ© sur l’utilisation d’une grille de lumiĂšre harmonique qui permet de translater les hautes frĂ©quences spatiales de l’échantillon vers la rĂ©gion d’observation du microscope. L’amĂ©lioration de la rĂ©solution de cette technologie de microscopie dĂ©pend fortement de la technique de reconstruction, qui rĂ©tablit les hautes frĂ©quences spatiales de l’échantillon dans leur position d’origine. Les mĂ©thodes classiques de reconstruction SIM nĂ©cessitent une connaissance parfaite de l’illumination de l’échantillon. Cependant, l’implĂ©mentation d’un contrĂŽle parfait de l’illumination harmonique sur le plan de l’échantillon n’est pas facile expĂ©rimentalement et il prĂ©sente un grand dĂ©fi. L’hypothĂšse de la connaissance parfaite de l’intensitĂ© de la lumiĂšre illuminant l’échantillon en SIM peut donc introduire des artefacts sur l’image reconstruite de l’échantillon, Ă  cause des erreurs d’alignement de la grille qui peuvent se prĂ©senter lors de l’acquisition expĂ©rimentale. Afin de surmonter ce dĂ©fi, nous avons dĂ©veloppĂ© dans cette thĂšse des stratĂ©gies de reconstruction «aveugle» qui sont indĂ©pendantes de d’illumination. À l’aide de ces stratĂ©gies de reconstruction dites «blind-SIM», nous avons Ă©tendu la SIM harmonique pour l’appliquer aux cas de «SIM-speckle» qui utilisent des illuminations alĂ©atoires et inconnues qui contrairement Ă  l’illumination harmonique, ne nĂ©cessitent pas de controle. Comme il est utile de rĂ©cupĂ©rer des informations sur l’illumination en SIM harmonique, nous avons dĂ©veloppĂ© une reconstruction blind-SIM tridimensionnel et filtrĂ©e qui confine l’estimation itĂ©rative des illuminations au voisinage des pics dans l’espace de Fourier, en utilisant des masques de filtre de Fourier soigneusement conçus. En utilisant des techniques de reconstruction blind-SIM, une rĂ©solution latĂ©rale d’environ 100 nm et une rĂ©solution axiale d’environ 200 nm sont obtenues, Ă  la fois en SIM harmonique et en SIM speckle. En outre, pour rĂ©duire le problĂšme de focalisation dans les images de champ large, une technique de calcul simple qui repose sur la reconstruction bidimensionnel de donnĂ©es Ă  partir de PSF tridimensionnel est dĂ©veloppĂ©e. En outre, afin de combiner Ă  la fois les fonctionnalitĂ©s de la SIM et de la microscopie ĂĄ nappe de lumiĂšre, en tant que preuve de concept, nous avons dĂ©veloppĂ© une configuration de microscope simple qui produit une nappe de lumiĂšre structurĂ©ePostprint (published version
    • 

    corecore