2,514 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Machine learning approximations to predict epigenetic age acceleration in stroke patients

    Get PDF
    Age acceleration (Age-A) is a useful tool that is able to predict a broad range of health outcomes. It is necessary to determine DNA methylation levels to estimate it, and it is known that Age-A is influenced by environmental, lifestyle, and vascular risk factors (VRF). The aim of this study is to estimate the contribution of these easily measurable factors to Age-A in patients with cerebrovascular disease (CVD), using different machine learning (ML) approximations, and try to find a more accessible model able to predict Age-A. We studied a CVD cohort of 952 patients with information about VRF, lifestyle habits, and target organ damage. We estimated Age-A using Hannum\u27s epigenetic clock, and trained six different models to predict Age-A: a conventional linear regression model, four ML models (elastic net regression (EN), K-Nearest neighbors, random forest, and support vector machine models), and one deep learning approximation (multilayer perceptron (MLP) model). The best-performing models were EN and MLP; although, the predictive capability was modest (

    An update on statistical boosting in biomedicine

    Get PDF
    Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine-learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine

    Non-communicable Diseases, Big Data and Artificial Intelligence

    Get PDF
    This reprint includes 15 articles in the field of non-communicable Diseases, big data, and artificial intelligence, overviewing the most recent advances in the field of AI and their application potential in 3P medicine

    Developing RNA diagnostics for studying healthy human ageing

    Get PDF
    Developing strategies to cope with increase in the ageing population and age-related chronic diseases is one of the societies biggest challenges. The characteristics of the ageing process shows significant inter-individual variation. Building genomic signatures that could account for variation in health outcomes with age may facilitate early prognosis of individual age-correlated diseases (e.g. cancer, coronary artery diseases and dementia) and help in developing better targeted treatments provided years in advance of acquiring disabling symptoms for these diseases. The aim of this thesis was to explore methods for diagnosing molecular features of human ageing. In particular, we utilise multi-platform transcriptomics, independent clinical data and classification methods to evaluate which human tissues demonstrate a reproducible molecular signature for age and which clinical phenotypes correlated with these new RNA biomarkers. [Continues.

    A Deep Learning Approach to Integrate Medical Big Data for Improving Health Services in Indonesia

    Get PDF
    Medical Informatics to support health services in Indonesia is proposed in this paper. The focuses of paper to the analysis of Big Data for health care purposes with the aim of improving and developing clinical decision support systems (CDSS) or assessing medical data both for quality assurance and accessibility of health services. Electronic health records (EHR) are very rich in medical data sourced from patient. All the data can be aggregated to produce information, which includes medical history details such as, diagnostic tests, medicines and treatment plans, immunization records, allergies, radiological images, multivariate sensors device, laboratories, and test results. All the information will provide a valuable understanding of disease management system. In Indonesia country, with many rural areas with limited doctor it is an important case to investigate. Data mining about large-scale individuals and populations through EHRs can be combined with mobile networks and social media to inform about health and public policy. To support this research, many researchers have been applied the Deep Learning (DL) approach in data-mining problems related to health informatics. However, in practice, the use of DL is still questionable due to achieve optimal performance, relatively large data and resources are needed, given there are other learning algorithms that are relatively fast but produce close performance with fewer resources and parameterization, and have a better interpretability. In this paper, the advantage of Deep Learning to design medical informatics is described, due to such an approach is needed to make a good CDSS of health services

    Genetics of Atrial Fibrillation in 2020 GWAS, Genome Sequencing, Polygenic Risk, and Beyond

    Get PDF
    Atrial fibrillation is a common heart rhythm disorder that leads to an increased risk for stroke and heart failure. Atrial fibrillation is a complex disease with both environmental and genetic risk factors that contribute to the arrhythmia. Over the last decade, rapid progress has been made in identifying the genetic basis for this common condition. In this review, we provide an overview of the primary types of genetic analyses performed for atrial fibrillation, including linkage studies, genome-wide association studies, and studies of rare coding variation. With these results in mind, we aim to highlighting the existing knowledge gaps and future directions for atrial fibrillation genetics research
    corecore