35,059 research outputs found

    An Evolutionary Algorithm to Optimize Log/Restore Operations within Optimistic Simulation Platforms

    Get PDF
    In this work we address state recoverability in advanced optimistic simulation systems by proposing an evolutionary algorithm to optimize at run-time the parameters associated with state log/restore activities. Optimization takes place by adaptively selecting for each simulation object both (i) the best suited log mode (incremental vs non-incremental) and (ii) the corresponding optimal value of the log interval. Our performance optimization approach allows to indirectly cope with hidden effects (e.g., locality) as well as cross-object effects due to the variation of log/restore parameters for different simulation objects (e.g., rollback thrashing). Both of them are not captured by literature solutions based on analytical models of the overhead associated with log/restore tasks. More in detail, our evolutionary algorithm dynamically adjusts the log/restore parameters of distinct simulation objects as a whole, towards a well suited configuration. In such a way, we prevent negative effects on performance due to the biasing of the optimization towards individual simulation objects, which may cause reduced gains (or even decrease) in performance just due to the aforementioned hidden and/or cross-object phenomena. We also present an application-transparent implementation of the evolutionary algorithm within the ROme OpTimistic Simulator (ROOT-Sim), namely an open source, general purpose simulation environment designed according to the optimistic synchronization paradigm

    A fine-grain time-sharing Time Warp system

    Get PDF
    Although Parallel Discrete Event Simulation (PDES) platforms relying on the Time Warp (optimistic) synchronization protocol already allow for exploiting parallelism, several techniques have been proposed to further favor performance. Among them we can mention optimized approaches for state restore, as well as techniques for load balancing or (dynamically) controlling the speculation degree, the latter being specifically targeted at reducing the incidence of causality errors leading to waste of computation. However, in state of the art Time Warp systems, events’ processing is not preemptable, which may prevent the possibility to promptly react to the injection of higher priority (say lower timestamp) events. Delaying the processing of these events may, in turn, give rise to higher incidence of incorrect speculation. In this article we present the design and realization of a fine-grain time-sharing Time Warp system, to be run on multi-core Linux machines, which makes systematic use of event preemption in order to dynamically reassign the CPU to higher priority events/tasks. Our proposal is based on a truly dual mode execution, application vs platform, which includes a timer-interrupt based support for bringing control back to platform mode for possible CPU reassignment according to very fine grain periods. The latter facility is offered by an ad-hoc timer-interrupt management module for Linux, which we release, together with the overall time-sharing support, within the open source ROOT-Sim platform. An experimental assessment based on the classical PHOLD benchmark and two real world models is presented, which shows how our proposal effectively leads to the reduction of the incidence of causality errors, as compared to traditional Time Warp, especially when running with higher degrees of parallelism

    Quantifying quality: a report on PFI and the delivery of public services

    Get PDF

    On improving the performance of optimistic distributed simulations

    No full text
    This report investigates means of improving the performance of optimistic distributed simulations without affecting the simulation accuracy. We argue that existing clustering algorithms are not adequate for application in distributed simulations, and outline some characteristics of an ideal algorithm that could be applied in this field. This report is structured as follows. We start by introducing the area of distributed simulation. Following a comparison of the dominant protocols used in distributed simulation, we elaborate on the current approaches of improving the simulation performance, using computation efficient techniques, exploiting the hardware configuration of processors, optimizations that can be derived from the simulation scenario, etc. We introduce the core characteristics of clustering approaches and argue that these cannot be applied in real-life distributed simulation problems. We present a typical distributed simulation setting and elaborate on the reasons that existing clustering approaches are not expected to improve the performance of a distributed simulation. We introduce a prototype distributed simulation platform that has been developed in the scope of this research, focusing on the area of emergency response and specifically building evacuation. We continue by outlining our current work on this issue, and finally, we end this report by outlining next actions which could be made in this field

    Financial Opening: Evidence and Policy Options

    Get PDF
    This paper evaluates the empirical evidence of increasing the chances of financial crises induced by opening up developing countries to short-term capital inflows, and appraises the various proposals made for mitigating the severity of financial crises. We point out that there is solid evidence that financial opening increases the chance of financial crises. There is more tenuous evidence that financial opening contributes positively to long-run growth. Hence, there may be a complex trade off between the adverse intermediate run and the beneficial long run effects of financial opening. The literature is abounded with proposals aimed at improving this intertemporal trade-off, reducing the costs of financial crises. A version of the Lucas critic may limit the welfare gain of these proposals. Hence, a better understanding of the structural characteristics leading to exposure and crises is the key for designing a successful restructuring of the global capital market. Some of the reforms may fall short of success due to coordination failure: they may be effective only if they were adopted comprehensively by all the relevant financial centers. Finally, some of the proposals may be too optimistic, ignoring the time inconsistency and political economy considerations, as well as presuming the ability to verify unambiguously the quality of adjustment.

    Load sharing for optimistic parallel simulations on multicore machines

    Get PDF
    Parallel Discrete Event Simulation (PDES) is based on the partitioning of the simulation model into distinct Logical Processes (LPs), each one modeling a portion of the entire system, which are allowed to execute simulation events concurrently. This allows exploiting parallel computing architectures to speedup model execution, and to make very large models tractable. In this article we cope with the optimistic approach to PDES, where LPs are allowed to concurrently process their events in a speculative fashion, and rollback/ recovery techniques are used to guarantee state consistency in case of causality violations along the speculative execution path. Particularly, we present an innovative load sharing approach targeted at optimizing resource usage for fruitful simulation work when running an optimistic PDES environment on top of multi-processor/multi-core machines. Beyond providing the load sharing model, we also define a load sharing oriented architectural scheme, based on a symmetric multi-threaded organization of the simulation platform. Finally, we present a real implementation of the load sharing architecture within the open source ROme OpTimistic Simulator (ROOT-Sim) package. Experimental data for an assessment of both viability and effectiveness of our proposal are presented as well. Copyright is held by author/owner(s)

    Financial Globalization and Economic Development: Toward an Institutional Foundation

    Get PDF
    On the promise of enormous benefits from financial openness, many developing countries have embraced financial globalization by adopting internal and external financial liberalization. Yet, despite the rhetoric of its proponents, there is little evidence of enhanced development finance or any concomitant improvement in economic development. We critically examine the mainstream theoretical rationale for financial globalization and liberalization as well as their explanations of the widespread financial instability and crises that have been associated with financial openness. The paper also draws on broader theoretical traditions to explain the ubiquity of recent financial crises. Pointing to an alternative more dynamic analysis of the symbiotic relationships between finance and economic development, we propose an institutional-centric approach that forms a basis for understanding the transformation required for financial development. For development to occur, financial flows need to feed into real sector circuits to enhance expansion and accumulation, whilst national flows need to tap into international flows to complement the speed and capacity of the domestic flows.Developing Countries; Development; Finance; Financial Liberalization
    corecore