247 research outputs found

    Empirical Modeling of Asynchronous Scalp Recorded and Intracranial EEG Potentials

    Get PDF
    A Brain-Computer Interface (BCI) is a system that allows people with severe neuromuscular disorders to communicate and control devices using their brain signals. BCIs based on scalp-recorded electroencephalography (s-EEG) have recently been demonstrated to provide a practical, long-term communication channel to severely disabled users. These BCIs use time-domain s-EEG features based on the P300 event-related potential to convey the user\u27s intent. The performance of s-EEG-based BCIs has generally stagnated in recent years, and high day-to-day performance variability exists for some disabled users. Recently intracranial EEG (i-EEG), which is recorded from the cortical surface or the hippocampus, has been successfully used to control BCIs in experimental settings. Because these recordings are closer to the sources of the neural activity, i-EEG provides superior signal-to-noise ratio, spatial resolution, and broader bandwidth compared to s-EEG. However, because i-EEG requires surgery and the long-term efficacy for BCIs must still be explored, this approach is still not an option for patients. In order to improve s-EEG BCI performance, it is important understand the underlying brain phenomena and exploit the relationships between the s-EEG and generally superior i-BEG signals. Because the human head acts as a volume conductor consisting of the brain, cerebrospinal fluid, skull, and scalp tissue, linear mathematical models can be used to relate s-EEG and i-EEG. This dissertation presents unique s-EEG and i-EEG data that were recorded from the same subjects and used to develop novel empirical models to estimate s-EEG from i-EEG. These new empirical models can be used to better understand the sources and propagation of the relevant neural activity, as well as to validate existing theoretical volume conduction models. It is envisioned that this knowledge will help to advance algorithms for improving s-EEG BCI performance

    Translation of EEG spatial filters from resting to motor imagery using independent component analysis.

    Get PDF
    Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters

    Adaptive Filtering Techniques for the Detection of User - Independent Single Trial ERPs in Brain Computer Interfaces

    Get PDF
    El trabajo desarrollado es una presentación de los sistemas Brain Computer Interface (BCI) e involucra el entendimiento tanto de su funcionamiento como de las señales cerebrales en las que este está basado. Para este proyecto, cada una de las partes que forman uno de los tipos de sistema BCI más ampliamente usado serán desarrolladas. Se estudiarán diversas técnicas de procesado de señal para ser aplicadas en varias partes del sistema. Además, una interfaz adecuada será creada para validar los métodos implementados y evaluar el rendimiento del sistema. El resultado final del trabajo será un sistema BCI completo

    Application of P300 Event-Related Potential in Brain-Computer Interface

    Get PDF
    The primary purpose of this chapter is to demonstrate one of the applications of P300 event-related potential (ERP), i.e., brain-computer interface (BCI). Researchers and students will find the chapter appealing with a preliminary description of P300 ERP. This chapter also appreciates the importance and advantages of noninvasive ERP technique. In noninvasive BCI, the P300 ERPs are extracted from brain electrical activities [electroencephalogram (EEG)] as a signature of the underlying electrophysiological mechanism of brain responses to the external or internal changes and events. As the chapter proceeds, topics are covered on more relevant scholarly works about challenges and new directions in P300 BCI. Along with these, articles with the references on the advancement of this technique will be presented to ensure that the scholarly reviews are accessible to people who are new to this field. To enhance fundamental understanding, stimulation as well as signal processing methods will be discussed from some novel works with a comparison of the associated results. This chapter will meet the need for a concise and practical description of basic, as well as advanced P300 ERP techniques, which is suitable for a broad range of researchers extending from today’s novice to an experienced cognitive researcher

    Multichannel Characterization of Brain Activity in Neurological Impairments

    Get PDF
    Hundreds of millions of people worldwide suffer from various neurological and psychiatric disorders. A better understanding of the underlying neurophysiology and mechanisms for these disorders can lead to improved diagnostic techniques and treatments. The objective of this dissertation is to create a novel characterization of multichannel EEG activity for selected neurological and psychiatric disorders based on available datasets. Specifically, this work provides spatial, spectral, and temporal characterizations of brain activity differences between patients/animal models and healthy controls, with focus on modern techniques that quantify cortical connectivity, which is widely believed to be abnormal in such disorders. Exploring the functional brain networks in these patients can provide a better understanding of the pathophysiology and brain network integrity of the respective disorders. This can allow for the assessment of neural mechanism deficits and possibly lead to developing a model for enhancement in the biology of neural interactions in these patients. This unique electrophysiological information may also contribute to the development of target drugs, novel treatments, and genetic studies. Moreover, the outcomes not only provide potential biomarkers for the diagnosis of respective disorders but also can serve as biofeedback for neurotherapy and also development of more sophisticated BCIs
    corecore